Dancing on ice: Experiments show how protons inside ice behave

April 1, 2016, Okinawa Institute of Science and Technology
Dancing on ice
This is the most common crystal structure of water ice. Oxygen (red sphere) are located in a hexagonal configuration, similar to a honey comb. Each oxygen ion is bound to neighboring protons (white sphere, hydrogen) by two short bonds and two longer bonds. The structure respects the ice rules: each bond can contain only one proton and each oxygen ion has two protons adjacent to it. Credit: OIST

While drinking your favourite cold drink, you probably do not imagine what is going on inside each ice cube. At the Okinawa Institute of Science and Technology Graduate University (OIST), the Theory of Quantum Matter Unit, led by Professor Nic Shannon has explained in detail the theory behind two experiments that show how protons inside ice behave. Their findings have been published in Physical Review B.

Everything we see from a cloud of smoke to a solid rock takes that specific form because of the collective behaviour of the atoms that make up that object. However, how do atoms choose how to behave? And which choices do they have? "We understand almost everything about how a single quantum particle behaves," explains Prof. Shannon, "but put a group of quantum particles together, and anything can happen. Surprisingly, we still don't really know what happens in something as simple as ."

A water molecule (H20) is formed when an oxygen ion forms covalent bonds with two (hydrogen). In ice, these water molecules are connected by weaker hydrogen bonds, so that every oxygen forms two short covalent bonds and two long hydrogen bonds with its neighbouring protons. Water ice is unique, because the oxygen atoms are ordered in hexagonally shaped crystals similar to honeycombs, but the hydrogen protons do not follow a regular pattern. Instead, they respect the so-called "ice rules": each bond can contain only one proton and each oxygen ion has two protons adjacent to it; but there are virtually infinite ways for the protons to satisfy this rule, even in a small piece of ice. So are protons in ice ordered or disordered?

OIST scientists found a theoretical explanation of the proton pattern found in neutron scattering or X-rays experiments. The pinch points (indicated in with black circles) reveal that protons are locally disordered, but globally ordered in water ice. Credit: OIST

OIST scientists have answered this first question by offering a theoretical explanation of the results from an experiment carried out in England, in which neutrons were scattered from crystals of frozen heavy water (D20). When neutrons are scattered from the ordered atoms in a crystal, experiments show a regular pattern of spots. Meanwhile scattering from completely disordered atoms is uniform, and featureless. But for protons in ice, neither of these things happens, and experiments instead show patterns which look like bowties, and like the letter "M". The "bowties", technically called "pinch points", are particularly interesting, because they show that protons are not completely disordered. They are locally ordered, yet globally disordered. This pattern is very rare in nature, it happens only in ice, a type of magnet called spin ice and a class of materials called proton-bonded ferroelectrics. "The presence of pinch points is telling us that protons can be described mathematically by a type of theory called a gauge theory, which is common to all the fundamental forces of nature. This is one of nature's best tricks," explains Prof. Shannon, "and is the basis of the Standard Model of elementary particles".

The OIST team also analysed ice from a different angle, from the point of view of quantum physics. Quantum physics allows protons to hop from one place to another, by a phenomenon called quantum tunnelling. Therefore, while oxygen's position is stable and ordered, protons can have a more fluid behavior. "Protons in water ice are not still, they dance around the oxygen," illustrates Prof. Shannon. "Experiments suggest that protons are disordered and mobile even at temperatures close to -268 ºC".

Using a quantum version of their gauge theory, OIST scientists suggested a theoretical explanation for the results of another experiment, also carried out in England, which measured the energy absorbed by ice from a beam of neutrons passing through it. "When you sing to a glass, you can make it vibrate. When neutrons scatter from the protons in ice, they do the same thing," explains Prof. Shannon. But in this case, the collective "vibration" of the disordered protons has a very special form: it behaves exactly like photons, the elementary particles that make up light. However, while ordinary photons are vibrations of electric and magnetic fields, ice's photons are made up of protons, moving in a coordinated manner. "The mathematics that explains the collective motion of protons in ice is exactly the same as the mathematics that describe light. Light and proton movements in ice are very similar," points out Dr Owen Benton, the first author in this study.

"The more that we learn about water, the more we realise that it is one the strangest and most beautiful things in the Universe," concludes Prof. Shannon. Think about it, when sipping your favourite cold drink!

Quantum tunnelling allows a change in the protons? configuration. Hydrogen protons (white sphere) can hop, so that long (hydrogen) and short (covalent) bonds between hydrogen and oxygen are interchanged within the hexagonal water ice. Credit: OIST

Explore further: Macroscopic quantum phenomena discovered in ice

More information: Owen Benton et al. Classical and quantum theories of proton disorder in hexagonal water ice, Physical Review B (2016). DOI: 10.1103/PhysRevB.93.125143

Related Stories

Macroscopic quantum phenomena discovered in ice

July 21, 2015

(Phys.org)—Scientists have discovered an anomaly in the properties of ice at very cold temperatures near 20 K, which they believe can be explained by the quantum tunneling of multiple protons simultaneously. The finding ...

Magnetic monopoles in spin ice crystals

November 12, 2015

Today one of the major goals of physicists is to unify the forces of nature into a Grand Unified Theory that could portray a more elegant and comprehensive representation of the Universe. One step towards this big theory ...

New method to better understand atomic nuclei

September 24, 2015

The precise structure of atomic nuclei is an old problem that has not been fully solved yet, and it also constitutes a current research focus in the field of natural sciences. Together with colleagues from Bonn University, ...

Scientists predict cool new phase of superionic ice

October 21, 2015

Scientists have predicted a new phase of superionic ice, a special form of ice that could exist on Uranus and Neptune, in a theoretical study performed by a team of researchers at Princeton University.

Recommended for you

Correlated nucleons may solve 35-year-old mystery

February 20, 2019

A careful re-analysis of data taken at the Department of Energy's Thomas Jefferson National Accelerator Facility has revealed a possible link between correlated protons and neutrons in the nucleus and a 35-year-old mystery. ...

CMS gets first result using largest-ever LHC data sample

February 15, 2019

Just under three months after the final proton–proton collisions from the Large Hadron Collider (LHC)'s second run (Run 2), the CMS collaboration has submitted its first paper based on the full LHC dataset collected in ...


Adjust slider to filter visible comments by rank

Display comments: newest first

Apr 01, 2016
This comment has been removed by a moderator.
Apr 01, 2016
This comment has been removed by a moderator.
Apr 03, 2016
This comment has been removed by a moderator.
Da Schneib
not rated yet Apr 05, 2016
That hexagonal organization of the oxygen atoms is the reason snowflakes have sixfold symmetry, and the dance of the protons is the reason no two are the same.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.