New unconventional superconductors and Weyl semi-metal dynamics

March 28, 2016
Special topic: New unconventional superconductors and Weyl semimetal
Four schematic structures investigated in this special topic. Credit: ©Science China Press

Unconventional superconductivity and topological quantum phenomena are two frontier research directions of condensed matter physics. A special topic published in a recent issue of Science China Physics, Mechanics & Astronomy collected several articles covering important progress in these two directions.

Superconductivity was discovered in mercury in 1911 by the group of Kamerling Onnes in Leiden (Holland). But the mystery of was unresolved until 1957, when Bardeen-Cooper-Schrieffer (BCS) proposed the electron-phonon coupling model. In the BCS model, two electrons near the Fermi surface with opposite momentum and spins form a bound state by exchanging phonons. Such charge carriers are called as Cooper pairs. Cooper pairs condense into a low-energy state, which exhibits macroscopic phase coherence with the presence of a superfluid. The validity of this theory is, however, quite limited, and it cannot explain superconductivity in many unconventional , such as cuprates, iron pnictides, and iron selenides.

Four works on were presented in this special collection. The first work concerns the effect of impurity scattering on superconductivity in K2Cr3As3, an unconventional superconductor discovered in 2015 by the same group. This superconductor may contain a one-dimensional superfluid channel and exhibit rarely reported triplet superconductivity. The report, by the group of Prof. Guang-Han Cao from Zhejiang University, deals with the effect of impurity resulting from dopants, which may reveal a fundamental feature of the manner of pairing. They found the suppression of superconductivity by non-magnetic impurities, which is consistent with a possible novel pairing gap with, for example, gap nodes.

The second work, by the group of Prof. JianLin Luo of the Chinese Academy of Sciences, involves NMR studies of the recently discovered superconductor MnP under pressure, which was discovered by the same group. The chiral magnetic state is essential to the superconductivity in that system. Here, the authors put new efforts into this issue. The third work is by Prof. Hai-Hu Wen's group from Nanjing University. Since the discovery of the superconductor (Li1-xFex)OHFeSe, researchers have questioned whether the superconductivity is robust and has a full volume. Clearly, the authors report robust superconductivity and anisotropy of the newly discovered superconductor (Li1-xFex)OHFeSe. Using well-documented data and analysis, they concluded a full volume of superconductivity in this new superconductor. The fourth work is by the group of Prof. ShiYan Li from Fudan University. They use elegant thermal transport measurements at very low temperatures to detect the superconducting gap structure of the new superconductor Ca10(Pt4-δAs8)((Fe1-xPtx)2As2)5 (Tc=22 K). They find strong evidence of a fully gapped feature, the gap structure of which is common with many other iron-based superconductors.

Finally, the special topic includes a paper by the group of Prof. MingHu Fang from Zhejiang University on the transport properties of the theoretically predicted Weyl semi-metal TaP. Weyl semi-metals are a very hot topic involving interesting physics. The detailed and careful transport measurements reveal not only the features of a semi-metal, but also some evidence of the chiral feature of the electrons, such as the huge positive and negative magnetoresistance. This discovery will trigger further studies on the Weyl semimetal state.

Explore further: Intertwining of superconductivity and magnetism

More information: Yi Liu et al. Effect of impurity scattering on superconductivity in K2Cr3As3, Science China Physics, Mechanics & Astronomy (2016). DOI: 10.1007/s11433-016-5788-6

GuoZhi Fan et al. 31P NMR study of magnetic phase transitions of MnP single crystal under 2 GPa pressure, Science China Physics, Mechanics & Astronomy (2016). DOI: 10.1007/s11433-016-5783-y

Hai Lin et al. Robust superconductivity and transport properties in (Li1-x Fe x )OHFeSe single crystals, Science China Physics, Mechanics & Astronomy (2016). DOI: 10.1007/s11433-016-5782-z

Xun Qiu et al. Nodeless superconducting gaps in Ca10(Pt4-δ As8)((Fe1-x Pt x )2As2)5 probed by quasiparticle heat transport, Science China Physics, Mechanics & Astronomy (2016). DOI: 10.1007/s11433-016-5780-1

JianHua Du et al. Large unsaturated positive and negative magnetoresistance in Weyl semimetal TaP, Science China Physics, Mechanics & Astronomy (2016). DOI: 10.1007/s11433-016-5798-4

Related Stories

Intertwining of superconductivity and magnetism

April 28, 2015

Inelastic neutron scattering experiments on a copper-oxide superconductor reveal nearly static, spatially modulated magnetism. Because static magnetism and superconductivity do not like to coexist in the same material, the ...

Scientists explain the theory behind Ising superconductivity

November 23, 2015

Superconductivity is a fascinating quantum phenomenon in which electrons form pairs and flow with zero resistance. However, strong enough magnetic field can break electron pairs and destroy superconductivity. Surprisingly, ...

Iron-based superconductors exhibit s-wave symmetry

May 18, 2012

(Phys.org) -- Condensed-matter physicists the world over are in hot pursuit of a comprehensive understanding of high-temperature superconductivity, not just for its technological benefits but for the clues it holds to strongly ...

Recommended for you

Two teams independently test Tomonaga–Luttinger theory

October 20, 2017

(Phys.org)—Two teams of researchers working independently of one another have found ways to test aspects of the Tomonaga–Luttinger theory that describes interacting quantum particles in 1-D ensembles in a Tomonaga–Luttinger ...

Using optical chaos to control the momentum of light

October 19, 2017

Integrated photonic circuits, which rely on light rather than electrons to move information, promise to revolutionize communications, sensing and data processing. But controlling and moving light poses serious challenges. ...

Black butterfly wings offer a model for better solar cells

October 19, 2017

(Phys.org)—A team of researchers with California Institute of Technology and the Karlsruh Institute of Technology has improved the efficiency of thin film solar cells by mimicking the architecture of rose butterfly wings. ...

Terahertz spectroscopy goes nano

October 19, 2017

Brown University researchers have demonstrated a way to bring a powerful form of spectroscopy—a technique used to study a wide variety of materials—into the nano-world.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.