Molecular architectures see the light

March 2, 2016
Scanning tunneling microscopic image of the topography of melamine-linked terrylene-diimide molecules - right side: inserted model of the molecular nertwork (Scale bar: 2nm) Credit: C. A. Palma / TUM

Organic photovoltaics bear great potential for large-scale, cost-effective solar power generation. One challenge to be surmounted is the poor ordering of the thin layers on top of the electrodes. Utilizing self-assembly on atomically flat, transparent substrates, a team of scientists at the Technical University of Munich (TUM) has engineered ordered monolayers of molecular networks with photovoltaic responses. The findings open up intriguing possibilities for the bottom-up fabrication of optoelectronic devices with molecular precision.

Nature is unrivaled when it comes to the self-assembly of complex, high-performance molecular machinery for light absorption, exciton or charge separation and electron transfer. Molecular nanotechnologists have long dreamt of mimicking such extraordinary biomolecular architectures and rewiring them to produce inexpensive electricity.

Now researchers from the Departments of Physics and Chemistry at the Technical University of Munich (TUM), from the Max-Planck Institute for Polymer Research (Mainz, Germany) and the Université de Strasbourg (France) have modified dye molecules in such a manner that allows them to serve as building blocks of self-assembling molecular networks.

On the atomically flat surfaces of a graphene coated diamond substrate the molecules self-assemble into the target architecture in a manner akin to proteins and DNA nanotechnology. The sole driving force stems from the engineered supramolecular interactions via hydrogen bonds. As expected, the molecular network produces a photocurrent when exposed to light.

From art to application

"For a long time engineered self-assembled molecular architectures were looked upon as arty," says PD Dr. Friedrich Esch, a lead author of the study. "With this publication we present for the first time a serious practical implementation of this technology."

"In conventional the improvement of molecular order is still a challenge. In contrast, the nanotechnology toolbox provides us with the possibility of an atomically precise layout of the constituting components a priori," says Dr. Carlos-Andres Palma, who co-supervised the study. "The possibility of full physicochemical control of the components gives us additional set-screws for functional optimization."

The scientists now hope to scale up the device configuration and certify the photovoltaic response under standard conditions. "Intercalating self-assembled dyes between stacks of two-dimensional electrodes like graphene, opens up the possibility of easy scale-up to efficient photovoltaic monolayer elements", claims Dr. Palma "This will put our work on the solar cell technology map".

Perfect match of surface chemistry and physics

The scientists used terrylene-diimide molecules as photoactive dyes. The network is formed when the elongated terrylene molecules link up with trivalent melamine. By choosing adequate side groups for the terrylene diimide the authors of the study determine which architectures can form.

"This work is an excellent example of the interdisciplinary cooperation we seek to initiate with the institution of the Catalysis Research Center: a perfect match of chemistry and physics," says Professor Ulrich Heiz, director of the TUM Catalysis Research Center.

Explore further: X-rays reveal details of plastic solar cell production

More information: Sarah Wieghold et al. Photoresponse of supramolecular self-assembled networks on graphene–diamond interfaces, Nature Communications (2016). DOI: 10.1038/ncomms10700

Related Stories

X-rays reveal details of plastic solar cell production

January 8, 2016

Plastic solar cells are light, easy to install, and readily produced using a printer. Nevertheless, the processes that take place on the molecular scale during the production of organic solar cells are not yet entirely clear. ...

Nanodevice, build thyself

January 14, 2016

As we continue to shrink electronic components, top-down manufacturing methods begin to approach a physical limit at the nanoscale. Rather than continue to chip away at this limit, one solution of interest involves using ...

Graphene decharging and molecular shielding

February 8, 2016

A new joint theoretical and experimental study suggests that graphene sheets efficiently shield chemical interactions. One of the promising applications of this phenomenon is associated with improving the quality of 2D materials ...

Recommended for you

Clothing fabric keeps you cool in the heat

November 16, 2017

(Phys.org)—Researchers have designed a thermal regulation textile that has a 55% greater cooling effect than cotton, which translates to cooler skin temperatures when wearing clothes made of the new fabric. The material ...

Graphene water filter turns whisky clear

November 14, 2017

Previously graphene-oxide membranes were shown to be completely impermeable to all solvents except for water. However, a study published in Nature Materials, now shows that we can tailor the molecules that pass through these ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.