CCNY research team in molecular breakthrough

March 14, 2016, City College of New York
CCNY research team in molecular breakthrough

Reducing a barrier that generally hinders the easy generation of new molecules, a team led by City College of New York chemist Mahesh K. Lakshman has devised a method to cleave generally inert bonds to allow the formation of new ones. The study is the cover story in the journal ACS Catalysis published by the American Chemical Society.

"Saturated carbon-hydrogen bonds in organic compounds are considered relatively inert and generally difficult to break in order to make other bonds, leading to new ," explained Lakshman, professor of chemistry in City College's Division of Science.

However, Lakshman and his colleagues demonstrated a method for accomplishing cleavage of carbon-hydrogen bonds and subsequent formation of carbon-nitrogen bonds.

Many of the ensuing new molecules bear structural similarities to the class of dideoxynucleosides, which are used as . "Thus, this research can provide more direct access to novel pharmaceutical entities," said Lakshman, whose research thrust is organic synthesis at the chemistry-biology interface.

Explore further: Privileged strategies for direct transformations of inert aliphatic carbon-hydrogen bonds

More information: Manish K. Singh et al. Ruthenium-Catalyzed C–H Bond Activation Approach to Azolyl Aminals and Hemiaminal Ethers, Mechanistic Evaluations, and Isomer Interconversion, ACS Catalysis (2016). DOI: 10.1021/acscatal.5b02603

Related Stories

Converting Nitrogen to a More Useful Form

January 9, 2007

Nitrogen-containing organic compounds are important products as well as intermediates for many pharmaceuticals, agrochemicals, and chemicals used in electronics. Air contains plenty of nitrogen, but it is in a form that cannot ...

Recommended for you

Targeting 'hidden pocket' for treatment of stroke and seizure

January 19, 2019

The ideal drug is one that only affects the exact cells and neurons it is designed to treat, without unwanted side effects. This concept is especially important when treating the delicate and complex human brain. Now, scientists ...

Artificially produced cells communicate with each other

January 18, 2019

Friedrich Simmel and Aurore Dupin, researchers at the Technical University of Munich (TUM), have for the first time created artificial cell assemblies that can communicate with each other. The cells, separated by fatty membranes, ...

Using bacteria to create a water filter that kills bacteria

January 18, 2019

More than one in 10 people in the world lack basic drinking water access, and by 2025, half of the world's population will be living in water-stressed areas, which is why access to clean water is one of the National Academy ...

Hand-knitted molecules

January 18, 2019

Molecules are usually formed in reaction vessels or laboratory flasks. An Empa research team has now succeeded in producing molecules between two microscopically small, movable gold tips – in a sense as a "hand-knitted" ...

This computer program makes pharma patents airtight

January 17, 2019

Routes to making life-saving medications and other pharmaceutical compounds are among the most carefully protected trade secrets in global industry. Building on recent work programming computers to identify synthetic pathways ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.