Related topics: virus · influenza

New synthetic molecule can kill the flu virus

EPFL scientists have developed a synthetic molecule capable of killing the virus that causes influenza. They hope their discovery will lead to an effective drug treatment.

Covid and commercial research decline

Inevitably, the rapid spread of an emergent and potentially lethal virus around the world has led to huge disruption of normal life. With talk of a new-normal in the wake of the COVID-19 pandemic, we do not yet have any way ...

A method for predicting antiviral drug or vaccine targets

A novel method to predict the most promising targets for antiviral drugs or vaccines is based on the conformational changes viral glycoproteins go through during the process of recognition and binding to the host cell. This ...

Artificial 'candy canes' to block viruses

Viruses are part of the human experience throughout our lives. They cause lots of different illnesses with the current coronavirus pandemic as just one example. While a vaccine does provide effective protection from viral ...

Catalyst enables reactions with the help of green light

For the first time, chemists at the University of Bonn and Lehigh University in the U.S. have developed a titanium catalyst that makes light usable for selective chemical reactions. It provides a cost-effective and nontoxic ...

page 1 from 6

Antiviral drug

Antiviral drugs are a class of medication used specifically for treating viral infections. Like antibiotics for bacteria, specific antivirals are used for specific viruses. Unlike antibiotics, antiviral drugs do not destroy their target pathogen but inhibit their development.

Antiviral drugs are one class of antimicrobials, a larger group which also includes antibiotic, antifungal and antiparasitic drugs. They are relatively harmless to the host, and therefore can be used to treat infections. They should be distinguished from viricides, which are not medication but destroy virus particles outside the body.

Most of the antivirals now available are designed to help deal with HIV, herpes viruses (best known for causing cold sores and genital herpes, but actually causing a wide range of diseases), the hepatitis B and C viruses, which can cause liver cancer, and influenza A and B viruses. Researchers are working to extend the range of antivirals to other families of pathogens.

Designing safe and effective antiviral drugs is difficult, because viruses use the host's cells to replicate. This makes it difficult to find targets for the drug that would interfere with the virus without harming the host organism's cells.

The emergence of antivirals is the product of a greatly expanded knowledge of the genetic and molecular function of organisms, allowing biomedical researchers to understand the structure and function of viruses, major advances in the techniques for finding new drugs, and the intense pressure placed on the medical profession to deal with the human immunodeficiency virus (HIV), the cause of the deadly acquired immunodeficiency syndrome (AIDS) pandemic.

Almost all anti-microbials, including anti-virals, are subject to drug resistance as the pathogens mutate over time, becoming less susceptible to the treatment. For instance, a recent study published in Nature Biotechnology emphasized the urgent need for augmentation of oseltamivir (Tamiflu) stockpiles with additional antiviral drugs including zanamivir (Relenza) based on an evaluation of the performance of these drugs in the scenario that the 2009 H1N1 'Swine Flu' neuraminidase (NA) were to acquire the tamiflu-resistance (His274Tyr) mutation which is currently wide-spread in seasonal H1N1 strains.

This text uses material from Wikipedia, licensed under CC BY-SA