Wirelessly supplying power to brain

February 8, 2016
A fabricated wireless power transmission device with a flexible antenna and a CMOS rectifier chip (97% of the flexible device area is composed of a flexible film of thickness 10 μm). Credit: (C) Toyohashi University Of Technology

Human and animal movements generate slight neural signals from their brain cells. These signals obtained using a neural interface are essential for realizing brain-machine interfaces (BMI). Such neural recording systems using wires to connect the implanted device to an external device can cause infections through the opening in the skull. One method of solving this issue is to develop a wireless neural interface that is fully implantable on the brain.

However, the implanted on the brain surface should be of small size and minimally invasive. Furthermore, it requires the integration of a power source, antenna for wireless communication, and many functional circuits.

Now, a research team at the Department of Electrical and Electronic Information Engineering at Toyohashi University of Technology has developed a wafer-level packaging technique to integrate a silicon large-scale integration (LSI) chip in a very thin film of a thickness 10 μm. The approach is realized using flip-chip bonding. The researchers have fabricated a (WPT) including a flexible antenna and rectifier chip by using the proposed method.

The first author PhD candidate Kenji Okabe said, "We have investigated how to integrate flexible antenna and high-performance circuits and tried this fabrication method with process conditions obtained through experiments." Assistant Professor Ippei Akita, who is leading the project, said, "Using flexible device technology is a good solution to implement bio-compatible passive devices such as antennas or sensor electrodes. On the other hand, silicon-based integrated circuit technology, which has long history, is suitable for ultra-low-power systems with many functionalities. So, we believe that combining these technologies is essential to establish such minimum invasive implantable devices."

A picture of a proposed architecture of the implantable device composed of flexible antenna and CMOS circuits for wireless-powered neural interface systems. Credit: (C) Toyohashi University Of Technology

The fabricated device is of size 27 mm × 5 mm, and 97% of the device area is composed of a flexible film as the silicon chip has a small area. Therefore, it has sufficient flexibility to fit the shape of the brain surface. In addition, the researchers achieved WPT to the device immersed in saline.

This WPT device can supply electricity to other circuits included in the neural interface. The researchers are trying to integrate more functions (e.g., amplifiers, analog-to-digital converters, signal processors, and radio frequency circuits) to an LSI chip. This study may contribute to the development of safer BMI systems.

A picture of PhD candidate Kenji Okabe (Left) and Assistant Professor Ippei Akita (Right). Credit: (C) Toyohashi University Of Technology

Explore further: Ultra-compact implantable image sensor using body channel communication

More information: Kenji Okabe, Horagodage Prabhath Jeewan, Shota Yamagiwa, Takeshi Kawano, Makoto Ishida, and Ippei Akita (2015). Co-design method and wafer-level packaging technique of thin-film flexible antenna and silicon CMOS rectifier chips for wireless-powered neural interface systems, Sensors, Article first published online: Dec, 16. 2016, 15(12), 31821-32. DOI: 10.3390/s15229885

Related Stories

Team unveils novel wireless brain sensor

February 28, 2013

A team of neuroengineers based at Brown University has developed a fully implantable and rechargeable wireless brain sensor capable of relaying real-time broadband signals from up to 100 neurons in freely moving subjects. ...

Recommended for you

Volumetric 3-D printing builds on need for speed

December 11, 2017

While additive manufacturing (AM), commonly known as 3-D printing, is enabling engineers and scientists to build parts in configurations and designs never before possible, the impact of the technology has been limited by ...

Tech titans ramp up tools to win over children

December 10, 2017

From smartphone messaging tailored for tikes to computers for classrooms, technology titans are weaving their way into childhoods to form lifelong bonds, raising hackles of advocacy groups.

Mapping out a biorobotic future  

December 8, 2017

You might not think a research area as detailed, technically advanced and futuristic as building robots with living materials would need help getting organized, but that's precisely what Vickie Webster-Wood and a team from ...

Lyft puts driverless cars to work in Boston

December 6, 2017

Lyft on Wednesday began rolling out self-driving cars with users of the smartphone-summoned ride service in Boston in a project with technology partner nuTonomy.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.