Team devises easier way to make 'bijels,' a complex new form of liquid matter

January 27, 2016 by Evan Lerner, University of Pennsylvania
STRIPS makes it easier to control the overall shape of the bijel, enabling it to take the form of blobs, membranes or fibers

Oil and water famously don't mix, but finely dispersing one in the other produces a liquid mixture with many useful properties. An emulsion consisting of tiny droplets of one of those liquids immersed in the other is the most common form, found in everything from salad dressings, to cosmetics to industrial lubricants.

Other, more complex emulsions are possible; getting the interfaces between the two liquids into different shapes unlocks new kinds of behaviors and applications. And thanks to new research from University of Pennsylvania School of Engineering and Applied Science, one special kind of emulsion is becoming easier to make.

Known as a bicontinuous interfacially jammed emulsion gel, or bijel, this type of emulsion is eyed as a kind of liquid conveyor belt for continuous chemical reactions. This is because, rather than isolated droplets, both the oil and phases in these materials consist of densely intertwined but fully connected networks that other molecules can flow through. A layer of particles "jammed" at the interface between the oil and water networks prevents them from dispersing further, but could also serve as a catalyst for those reactions.

Such a complex structure has only recently been made possible through advances in soft matter physics, and has until now been limited to a small number of compatible oils. The Penn team's method for making bijels, which uses ethanol instead of precise temperature changes to drive the formation of the networks, works with a much wider array of oils, opening the door to new applications.

The method also makes it easier to control the overall shape of the bijel, enabling it to take the form of blobs, membranes or fibers. They can also control the dimensions of the internal networks, potentially fine-tuning it to a given application.

The team consists of Daeyeon Lee, an associate professor in Penn Engineering's Department of Chemical and Biomolecular Engineering, Kathleen Stebe, the Richer & Elizabeth Goodwin Professor of Chemical and Biomolecular Engineering and Martin Haase, a postdoctoral researcher who works in both of their labs.

They published their results in the journal Advanced Materials.

Originally devised by a team of researchers at the University of Edinburgh, bijels were first made using a process known as thermally induced spinodal decomposition. There, oil and water are forced to mix by heat, then to separate by dropping the temperature of the mixture. An injection of particles that go to the intertwined interfaces between the liquids stops that process before the oil and water separate into discrete droplets.

"The problem with this process is that it's very delicate," Stebe said. "While there are a handful of special sets of oil and water that will do the temperature trick, there are hundreds of sets that work with our method. We went from a finicky, delectate space to a workhorse space that we can use again and again."

When Hasse, an expert in three-component chemical systems and nanoparticles at interfaces, joined Penn, he, Lee and Stebe brainstormed potential research projects that involved these elements. Bijel manufacture jumped out to them in what they call an "aha" moment.

The method they devised, known as solvent transfer-induced phase separation, or STRIPS, uses ethanol instead of heat to mix and un-mix the oil and water.

In addition to the wider range of materials that is compatible with STRIPS over the heat-based method, the Penn method allows for greater control of the shape that the final bijel takes.

"Because we pull ethanol out directionally," Haase said, "the rate of bijel formation decreases from the outside to the inside of the material. That gives us structures with different length scales, such as intertwined fingers that are really fine on the surface but really open in the center. The multi-step nature of the phase separation additionally gives us nano-sized features with high surface areas. All of this helps us make what we call 'asymmetric hierarchical structure' which is helpful for size selective separation processes, amongst other applications."

With their complicated internal structures, bijels could solve a problem intrinsic to chemical reactions that take place in water and have products that are soluble in oil. So-called "emulsion microreactors" involve packing the reactants into water droplets with catalyzing particles on their surfaces, then immersing them all in an oil bath.

"The problem with this is that once you use up the reactants in your droplets, you're done," said Lee. "All the droplets are isolated, so there's no easy way to "restock" them with new reactants. That's where bijels come in. You could keep on feeding the water phase with reactants and keep on pulling out product from the phase. We call that a 'continuous reactor,' and they'd be very useful for things like refining biofuels."

The team's next steps involve looking for applications to which STRIPS-formed bijels are particularly suited.

Explore further: A simple way to make and reconfigure complex emulsions (w/ Video)

More information: Martin F. Haase et al. Continuous Fabrication of Hierarchical and Asymmetric Bijel Microparticles, Fibers, and Membranes by Solvent Transfer-Induced Phase Separation (STRIPS), Advanced Materials (2015). DOI: 10.1002/adma.201503509

Related Stories

Emulsion with a round-trip ticket

June 14, 2007

Oil and water are not miscible. However, it is possible to combine both into an emulsion in which they act as a unit—for example, in creams, body lotion, milk, or mayonnaise. In these substances, one of the two liquids ...

Microdroplet reactors mimic living systems

January 20, 2016

"Living systems are achieved by complex chemical reaction dynamics far from equilibrium, such as gene expression networks, signalling networks, metabolic circuits and neural networks," explains Masahiro Takinoue at Tokyo ...

Recommended for you

The stiffest porous lightweight materials ever

December 12, 2018

Researchers at ETH have developed and manufactured a family of architectures that maximises the stiffness of porous lightweight materials. It's practically impossible to develop stiffer designs.

Researchers develop smartphone-based ovulation test

December 11, 2018

Investigators from Brigham and Women's Hospital are developing an automated, low-cost tool to predict a woman's ovulation and aid in family planning. Capitalizing on advancements in several areas, including microfluidics, ...

Field-responsive mechanical metamaterials (FRMMs)

December 11, 2018

In a recent study published in Science Advances, materials scientists Julie A. Jackson and colleagues presented a new class of materials architecture called field-responsive mechanical metamaterials (FRMM). The FRMMs exhibit ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.