Isolating water's impact on vibrations within DNA

December 14, 2015
DNA double helix. Credit: public domain

In a biological system, the ratio of water-to-non-water molecules, known as the hydration level, influences both the arrangement of biomolecules and the strength of the electric interactions that occur between biomolecules, free ions, and functional groups, which are groups of atoms within molecules that strongly influence the molecules' chemical properties. To isolate the contribution of water to the vibrational fluctuations that occur between DNA, bulk water, and the charged biomolecular interface between the two, researchers at the Max-Born Institute for Nonlinear Optics and Short Pulse Spectroscopy in Berlin have performed two-dimensional spectroscopic analyses on double-stranded DNA helices at different hydration levels.

The analysis gives insight into the way and DNA interact, which could ultimately help scientists understand how biological systems function at the molecular level and what goes wrong when adverse conditions cause the systems to fail.

Two-dimensional infrared spectroscopy is a laser technique used to map correlated vibrations, the basic oscillatory motions of atoms, and their fluctuations into observable data.

The researchers used an amplified titanium-sapphire laser system to generate a sequence of four femtosecond infrared pulses in the low-frequency range that corresponds to the vibrational modes of DNA's sugar-phosphate backbones between 920 and 1120 cm-1. They found that the spectra give evidence of both ultrafast structural fluctuations and a broadening of vibrational transitions, which reflects the structural disorder and variation of hydrogen bonding at the DNA-water interface.

"We were looking for probes which are most sensitive to dynamics at the [DNA-water] interface and noninvasive, leaving the structure of the interface unchanged," said Thomas Elsaesser, director of the institute and a professor of experimental physics at Humboldt University of Berlin. "We concluded that [DNA] backbone modes would be interesting candidates, as their elongations are at the interface and they should be sensitive to local electric fields."

Elsaesser and his colleagues at the Max-Born Institute detail their investigations this week in Structural Dynamics.

Their current work builds on a seminal paper published in Nature in 2005 - with the collaboration of Dwayne Miller's group at the University of Toronto - which reported the first two-dimensional spectra of bulk water and established the basic time scales of the structural fluctuations that determine the lineshapes of vibrations.

For DNA, dehydration induces a transition from the traditional B-helix form to the A-helix form, the second most common shape. To determine the vibrational contribution of a system's hydration level, Elsaesser and his colleagues spectroscopically examined DNA strands at 0% humidity and 92% humidity, which correspond to around 2 and 20 water molecules per base pair, respectively.

By analyzing the two-dimensional spectral lineshapes, the researchers found that the hydrated DNA strands display structural fluctuations on a sub-picosecond time scale - less than a trillionth of a second - and that the structural disorder of local arrangements of water and DNA functional groups persists for time scales longer than 10 picoseconds, leaving water-DNA hydrogen bonds intact. Additionally, they found that although the arrangement of interfacial water molecules fluctuates at a slower rate compared to bulk water, it makes a substantial contribution to the sub-picosecond fluctuations, along with the low-frequency motions of the DNA helix.

They also noticed a pronounced coupling of the different, partly delocalized backbone modes. According to Elsaesser, this results in an energy transfer between the modes on a time scale of a few picoseconds.

Future work for Elsaesser and his colleagues includes extending their investigation toward longer natural DNA and RNA systems, such as DNA from salmon testes in a full water environment, as well as investigating the terahertz spectroscopy of low frequency motions and electric interactions.

Explore further: Structural memory of water persists on picosecond timescale

More information: Biswajit Guchhait et al. Ultrafast vibrational dynamics of the DNA backbone at different hydration levels mapped by two-dimensional infrared spectroscopy, Structural Dynamics (2016). DOI: 10.1063/1.4936567

Related Stories

Structural memory of water persists on picosecond timescale

September 18, 2015

A team of scientists from the Max Planck Institute for Polymer Research (MPI-P) in Mainz, Germany and FOM Institute AMOLF in the Netherlands have characterized the local structural dynamics of liquid water, i.e. how quickly ...

Directly visualizing hydrogen bonds

July 15, 2014

Using a newly developed, ultrafast femtosecond infrared light source, chemists at the University of Chicago have been able to directly visualize the coordinated vibrations between hydrogen-bonded molecules—the first time ...

Resolving controversy at the water's edge

January 27, 2012

Water (H2O) has a simple composition, but its dizzyingly interconnected hydrogen-bonded networks make structural characterizations challenging. In particular, the organization of water surfaces—a region critical to processes ...

Recommended for you

Scientific advances can make it easier to recycle plastics

November 17, 2017

Most of the 150 million tons of plastics produced around the world every year end up in landfills, the oceans and elsewhere. Less than 9 percent of plastics are recycled in the United States, rising to about 30 percent in ...

The spliceosome—now available in high definition

November 17, 2017

UCLA researchers have solved the high-resolution structure of a massive cellular machine, the spliceosome, filling the last major gap in our understanding of the RNA splicing process that was previously unclear.

Ionic 'solar cell' could provide on-demand water desalination

November 15, 2017

Modern solar cells, which use energy from light to generate electrons and holes that are then transported out of semiconducting materials and into external circuits for human use, have existed in one form or another for over ...

Pulling iron out of waste printer toner

November 15, 2017

Someday, left-over toner in discarded printer cartridges could have a second life as bridge or building components instead of as trash, wasting away in landfills and potentially harming the environment. One group reports ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.