Ancestors of land plants were wired to make the leap to shore

October 5, 2015 by Terry Devitt
Closterium strigosum is one of the green algae the scientists analyzed. Credit: Michael Melkonian

When the algal ancestor of modern land plants first succeeded in making the transition from aquatic environments to an inhospitable shore 450 million years ago, it changed the world by dramatically altering climate and setting the stage for the vast array of terrestrial life.

But the genetic and developmental innovations used to make the leap to land have been enduring secrets of nature. Now, an international team of researchers, writing this week (Oct. 5, 2015) in the Proceedings of the National Academy of Sciences (PNAS), reveals that the aquatic algae from which terrestrial plant life first arose were genetically pre-adapted to form the with microorganisms that most land plants need to acquire nutrients from the soil.

The finding is important because it begins to flesh out the story of how the first land plants evolved from freshwater algae, formed critical symbiotic partnerships with microorganisms like and bacteria, and made the world's land masses habitable. What's more, understanding the genetic pathways involved could ultimately help agronomists unlock similar genes that are likely conserved in plants such as cereals and the that is the most promising biofuel stock but that now require substantial amounts of chemical fertilizer.

"We were expecting that these mechanisms arose with land plants," explains Jean-Michel Ane, a University of Wisconsin-Madison professor of bacteriology and agronomy and the senior author of the PNAS report. "The surprise was finding in algae the mechanisms we know allow plants to interact with symbiotic fungi."

The discovery shows for the first time that the algae already knew how to interact with while it was still in the water, observes Pierre-Marc Delaux, who conducted the research as a postdoctoral fellow at UW-Madison and is now at the John Innes Centre in the U.K. "Without the development of this pre-adapted capability in algae, the Earth would be a very different place today," says Delaux.

Many extant depend on symbiotic relationships with microorganisms to thrive. The most famous are legumes and their beneficial association with nitrogen-fixing bacteria. But many other plant species, notes Ane, depend on relationships with fungi to chemically convert minerals in soil to forms that benefit the plant.

The efficient acquisition of mineral nutrients, says Ane, was likely one of the primary challenges for the earliest land plants.

"The association between plants, algae and fungi probably played a really important role in the ability of plants to colonize land," according to the Wisconsin researcher. "In fact, many of us think early plants were able to colonize lands because they evolved the ability to associate with beneficial fungi."

The genes required to abet symbiosis between plants and microbes likely arose in a common ancestor of green algae and land plants, says Ane.

Prior to the new study, little was know about the associations between algae and fungi. The plants use to form a symbiosis with fungi were known in called liverworts and hornworts, ancient lineages sister to all other land plant lineages. Liverworts thrive in damp environments worldwide and the oldest known liverwort fossils provide the earliest evidence of plants colonizing land.

"We had found these mechanisms in liverworts, but not algae previously," explains Ane.

And while microorganisms had been found before in association with algae, they were believed to be pathogens, not symbionts. "Nobody had studied associations in these freshwater algae. We think some of these associations may be beneficial."

Genetic features in plants, animals and microbes tend to be preserved and repurposed through evolutionary history. Discovering these pathways allowing associations with beneficial microbes in green and in cereals, which now require significant amounts of chemical fertilizer, could enable the engineering in plants of more efficient nutrient acquisition—significantly reducing the need for chemical fertilizers for food and bioenergy production.

Explore further: A touching story: The ancient conversation between plants, fungi and bacteria

More information: Algal ancestor of land plants was preadapted for symbiosis, www.pnas.org/cgi/doi/10.1073/pnas.1515426112

Related Stories

Plant light sensors came from ancient algae

July 28, 2015

The light-sensing molecules that tell plants whether to germinate, when to flower and which direction to grow were inherited millions of years ago from ancient algae, finds a new study from Duke University.

Ancestors of land plants revealed

April 18, 2011

It was previously thought that land plants evolved from stonewort-like algae. However, new research published in BioMed Central's open access journal BMC Evolutionary Biology shows that the closest relatives to land plants ...

Recommended for you

Mating induces sexual inhibition in female jumping spiders

October 18, 2017

After mating for the first time, most females of an Australian jumping spider are unreceptive to courtship by other males, and this sexual inhibition is immediate and often lasts for the rest of their lives, according to ...

Understanding the coevolving web of life as a network

October 18, 2017

Coevolution, which occurs when species interact and adapt to each other, is often studied in the context of pair-wise interactions between mutually beneficial symbiotic partners. But many species have mutualistic interactions ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.