ORNL microscopy finds evidence of high-temperature superconductivity in single layer

September 30, 2015 by Morgan Mccorkle, Oak Ridge National Laboratory
An ORNL-University of Rome study has delivered direct evidence of high-temperature superconductivity at the interface of two insulating oxide materials. Electron microscopy at ORNL showed that superconductivity arises from oxygen ions (circled in white) that are incorporated into the interface calcium layer.

Electron microscopy at the Department of Energy's Oak Ridge National Laboratory is pointing researchers closer to the development of ultra-thin materials that transfer electrons with no resistance at relatively high temperatures.

The study delivers direct evidence of high-temperature superconductivity at the interface of two insulating oxide materials. The paper by researchers from ORNL and the University of Rome Tor Vergata (Italy) is published in Physical Review Letters.

"One grand challenge in science is to manipulate materials locally by changing the distribution of atoms and the electronic structure, and that's what we're doing here," Cantoni said. "This is a way to control the material – by manipulating the oxygen to make this interface superconducting."

The ability to control and confine a material's superconductivity could lead to two-dimensional superconductors for applications such as increasingly smaller computing technologies.

"We always want to scale down to get functionality in thinnest amount of material possible," Cantoni said. "Usually when a material becomes thinner and thinner, its superconductivity disappears."

In the PRL study, researchers used scanning transmission at ORNL to examine the interface between two insulators, calcium copper oxide and strontium titanate oxide. The resulting data, combined with electron energy loss spectroscopy, confirmed that occurs within a highly confined region around the interface.

"We were able to establish that a one-unit-cell-thick calcium copper oxide layer at this interface is superconducting and that the critical temperature approaches 50 Kelvin, which is considered ," Cantoni said.

The team's microscopy showed that superconductivity arises from oxygen ions that are incorporated into the interface calcium layer during the growth process. The extra oxygen ions pull electrons from the adjacent layer, creating holes known to produce superconductivity.

The study is published as "High Tc superconductivity at the interface between the CaCuO2 and SrTiO3 insulating oxides."

Explore further: Scientists uncover clues to role of magnetism in iron-based superconductors

More information: "High-Tc Superconductivity at the Interface between the CaCuO2 and SrTiO3 Insulating Oxides" Phys. Rev. Lett. 115, 147001 – Published 28 September 2015. dx.doi.org/10.1103/PhysRevLett.115.147001

Related Stories

Intertwining of superconductivity and magnetism

April 28, 2015

Inelastic neutron scattering experiments on a copper-oxide superconductor reveal nearly static, spatially modulated magnetism. Because static magnetism and superconductivity do not like to coexist in the same material, the ...

Pinning Down Superconductivity to a Single Layer

October 29, 2009

(PhysOrg.com) -- Using precision techniques for making superconducting thin films layer-by-layer, physicists at the U.S. Department of Energy's Brookhaven National Laboratory have identified a single layer responsible for ...

Recommended for you

Some black holes erase your past

February 21, 2018

In the real world, your past uniquely determines your future. If a physicist knows how the universe starts out, she can calculate its future for all time and all space.

Reaching new heights in laser-accelerated ion energy

February 20, 2018

A laser-driven ion acceleration scheme, developed in research led at the University of Strathclyde, could lead to compact ion sources for established and innovative applications in science, medicine and industry.

MEMS chips get metatlenses

February 20, 2018

Lens technologies have advanced across all scales, from digital cameras and high bandwidth in fiber optics to the LIGO lab instruments. Now, a new lens technology that could be produced using standard computer-chip technology ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

inkosana
not rated yet Oct 02, 2015
This is predictable from the correct model for superconduction : But our "experts" are looking for Cooper Pairs which just like the Higgs boson are red herrings. Superconduction OUTSIDE the surface of an insulator which occurs at room and higher temperatures have been experimentally proved and patented. In fact it persists up to 400 Celsius. The substrate deteriorates before the critical temperature can be reached.
docile
Oct 02, 2015
This comment has been removed by a moderator.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.