Nano-style sheets may aid health, shield ecosystem

August 13, 2015 by Blaine Friedlander, Cornell University
Nano-style sheets may aid health, shield ecosystem
Under a microscope, Nylon-6 fibers comprise nanomembrane sheets.

Microscopically, "nanomembrane" sheets made from nylon resemble a tangled web. The tiny iron oxide particles on the fiber surfaces can help clean toxic chemicals from water, but if the particles get separated from the web, they can become hazards themselves.

In a new study, Cornell researchers examined these special nylon sheets – replete with applied nanoscale – to see if the particles wash loose.

The particles work like magnets to capture bacteria and viruses, and to extract chemicals or dye molecules out of water. Membranes with these particles attached could be used in devices to detect water contamination or in filters to remove chemicals or dyes from industrial waste. However, to be effective and safe, the particles need to stay on the membrane. The study evaluated the nanoparticle treatment uniformity and particle retention of the nylon membranes as they were processed (or washed) in solutions of varying pH levels.

"It's critical to evaluate particle retention and stability on fibers to reduce human health and environmental concerns," said Nidia Trejo, a Cornell doctoral student in the field of fiber science. Trejo, who with Margaret Frey, professor of fiber science, authored the study, "A comparative study on electrosprayed, layer-by-layer, and chemically grafted nanomembranes loaded with ," in the Journal of Applied Polymer Science, July 14.

The nanomembrane sheet structure looks like a dryer sheet but is made from layers of tiny, randomly oriented fibers that only can be seen with electron microscopes. These nanomembranes have a high surface-to-volume ratio, which enhances the material's function.

Nano-style sheets may aid health, shield ecosystem
Nidia Trejo, a doctoral student in fiber science, conducts research in the laboratory of Margaret Frey. Both Trejo and Frey evaluated particle retention and stability on nanomembrane sheets. Credit: Jason Koski/University Photography

Manufacturing methods vary depending on the liquid environments in which the membranes would be used. Adhering nanoparticles of iron oxide to nylon fiber is done in three ways: electrospraying, which facilitates uniform nanoparticle placement in the fibers; layer-by-layer assembly, where particles are coated on the fiber electrostatically; or chemical bonding.

"For the membrane, it's important to evaluate particle retention and stability," Trejo explained. "You would want the nanoparticles to stay on the Nylon 6 membranes so the material can have function throughout the life use. If the material is used for wastewater treatment applications, you wouldn't want the particles themselves to become pollutants if are they releasing from the membranes and into the water."

A range of state-of-the-art facilities on campus was used by the researchers. The Cornell Center for Materials Research (funded through the National Science Foundation's Materials Research Science and Engineering Center program) supported this study through its shared facilities. Additionally, Cornell's Nanobiotechnology Center and the Cornell Nutrient Analysis Laboratory supported this research.

CAN NANOFIBER SAVE YOUR LIFE?

Researchers in professor Margaret Frey's lab create fibers hundreds of times thinner than a human hair that can capture and pathogens. The fibers have been designed and combined to prevent the spread of agricultural chemicals and to capture toxic substances in liquids.

Tiny, complex devices traditionally are made in high-tech clean rooms using expensive equipment and costly material, like gold. Frey and her colleagues are replacing that cost by making the devices with nanofibers from plastics, outside the clean room, using an inexpensive, scalable process: electrospinning.

Using nanofibers, processes done in a medical testing lab – for example, purifying samples, mixing ingredients, capturing bacteria – can be done with material about the size of a deck of cards. The fibers are a fast, easy and inexpensive way to concentrate on E. coli, cholera toxin or carcinogens and to improve accuracy of detection. Eventually, these fibers will be part of devices as inexpensive and easy to use as home pregnancy tests and will diagnose diseases without requiring specialized laboratories – particularly useful in regions with limited access to doctors and hospitals.

To prevent pesticides from harming the environment, Frey and her students have encapsulated pesticides into biodegradable nanofibers. This keeps them intact until needed or makes sure they do not wash away from the plants they protect. The delivery system is created by electrospinning solutions of cellulose, the pesticide and polylactic acid – a polymer derived from corn.

The materials are biodegradable and derived from renewable resources. "The chemical is protected, so it won't degrade from being exposed to air and water," Frey said, explaining that this keeps the chemical where it needs to be and allows it to time-release. "By allowing rapid detection of disease and preventing agricultural chemical release into the environment, these nanofibers just might save a life," she said.

Explore further: New method applies pesticides in nanofibers to keep chemicals on target

More information: "A comparative study on electrosprayed, layer-by-layer, and chemically grafted nanomembranes loaded with iron oxide nanoparticles." J. Appl. Polym. Sci., 132, 42657, DOI: 10.1002/app.42657

Related Stories

Researchers develop new way to manufacture nanofibers

May 13, 2015

Researchers at the University of Georgia have developed an inexpensive way to manufacture extraordinarily thin polymer strings commonly known as nanofibers. These polymers can be made from natural materials like proteins ...

Safe motorcycle helmets made of carrot fibers

August 6, 2015

Crackpot idea or recipe for success? This is a question entrepreneurs often face. Is it worth converting the production process to a new, ecologically better material? Empa has developed an analysis method that enables companies ...

Sandcastles inspire new nanoparticle binding technique

August 5, 2015

If you want to form very flexible chains of nanoparticles in liquid in order to build tiny robots with flexible joints or make magnetically self-healing gels, you need to revert to childhood and think about sandcastles.

Recommended for you

Galactic center visualization delivers star power

March 21, 2019

Want to take a trip to the center of the Milky Way? Check out a new immersive, ultra-high-definition visualization. This 360-movie offers an unparalleled opportunity to look around the center of the galaxy, from the vantage ...

Ultra-sharp images make old stars look absolutely marvelous

March 21, 2019

Using high-resolution adaptive optics imaging from the Gemini Observatory, astronomers have uncovered one of the oldest star clusters in the Milky Way Galaxy. The remarkably sharp image looks back into the early history of ...

When more women make decisions, the environment wins

March 21, 2019

When more women are involved in group decisions about land management, the group conserves more—particularly when offered financial incentives to do so, according to a new University of Colorado Boulder study published ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.