Gold-diamond nanodevice for hyperlocalised cancer therapy

July 31, 2015, Springer
Gold-diamond nanodevice for hyperlocalised cancer therapy

Precise targeting biological molecules, such as cancer cells, for treatment is a challenge, due to their sheer size. Now ,Taiwanese scientists have proposed an advanced solution, based on a novel combination of previously used techniques, which can potentially be applied to thermal cancer therapy. Pei-Chang Tsai from the Institute of Atomic and Molecular Sciences, at the Academia Sinica, Taipei, and colleagues just published in EPJ QT an improved sensing technique for nanometre-scale heating and temperature sensing. Using a chemical method to attach gold nanorods to the surface of a diamond nanocrystal, the authors have invented a new biocompatible nanodevice. It is capable of delivering extremely localised heating from a near-infrared laser aimed at the gold nanorods, while accurately sensing temperature with the nanocrystals.

The authors' lab specialises in fabricating bright fluorescent diamond nanocrystals. The paticularity of these nanocrystals is that they contain a high concentration of punctual colour centre defects. When exposed to green light, these centres emit a red fluorescent light, useful for sub-cellular imaging applications. Unlike ordinary fluorescent material, these centres can also be turned into hypersensitive nanoprobes to detect temperature and magnetic field, via optical manipulation and detection.

By introducing nanoparticles to the nanocrystal, the authors make it possible to convert the incoming laser light into extremely localised heat. These gold nanoparticles can therefore act as switchable nanoheaters for therapies based on delivering intense and precise heat to cancerous cells, using a laser as the energy source. The novelty of this study is that it shows that it is possible to use diamond nanocrystals as hypersensitive temperature sensors with a high spatial resolution - ranging from 10 to 100 nanometers - to monitor the amount of heat delivered to .

Explore further: Magnetic hyperthermia, an auxiliary tool in cancer treatments

More information: EPJ Quantum Technology, 2:19, DOI: 10.1140/epjqt/s40507-015-0031-3

Related Stories

An improved method for coating gold nanorods

March 18, 2015

Researchers have fine-tuned a technique for coating gold nanorods with silica shells, allowing engineers to create large quantities of the nanorods and giving them more control over the thickness of the shell. Gold nanorods ...

Recommended for you

Team invents method to shrink objects to the nanoscale

December 13, 2018

MIT researchers have invented a way to fabricate nanoscale 3-D objects of nearly any shape. They can also pattern the objects with a variety of useful materials, including metals, quantum dots, and DNA.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.