Gold nanotubes launch a three-pronged attack on cancer cells

February 12, 2015
Pulsed near infrared light (shown in red) is shone onto a tumour (shown in white) that is encased in blood vessels. The tumour is imaged by multispectral optoacoustic tomography via the ultrasound emission (shown in blue) from the gold nanotubes. Credit: Jing Claussen (Ithera Medical, Germany)

Scientists have shown that gold nanotubes have many applications in fighting cancer: internal nanoprobes for high-resolution imaging; drug delivery vehicles; and agents for destroying cancer cells.

The study, published today in the journal Advanced Functional Materials, details the first successful demonstration of the biomedical use of gold in a mouse model of .

Study lead author Dr Sunjie Ye, who is based in both the School of Physics and Astronomy and the Leeds Institute for Biomedical and Clinical Sciences at the University of Leeds, said: "High recurrence rates of tumours after surgical removal remain a formidable challenge in therapy. Chemo- or radiotherapy is often given following surgery to prevent this, but these treatments cause serious side effects.

Gold nanotubes - that is, with tubular structures that resemble tiny drinking straws - have the potential to enhance the efficacy of these conventional treatments by integrating diagnosis and therapy in one single system."

The researchers say that a new technique to control the length of nanotubes underpins the research. By controlling the length, the researchers were able to produce gold nanotubes with the right dimensions to absorb a type of light called 'near infrared'.

The study's corresponding author Professor Steve Evans, from the School of Physics and Astronomy at the University of Leeds, said: "Human tissue is transparent for certain frequencies of light - in the red/infrared region. This is why parts of your hand appear red when a torch is shone through it.

"When the gold nanotubes travel through the body, if light of the right frequency is shone on them they absorb the light. This light energy is converted to heat, rather like the warmth generated by the Sun on skin. Using a pulsed laser beam, we were able to rapidly raise the temperature in the vicinity of the nanotubes so that it was high enough to destroy ."

In cell-based studies, by adjusting the brightness of the laser pulse, the researchers say they were able to control whether the gold nanotubes were in cancer-destruction mode, or ready to image tumours.

In order to see the gold nanotubes in the body, the researchers used a new type of imaging technique called 'multispectral optoacoustic tomography' (MSOT) to detect the gold nanotubes in mice, in which gold nanotubes had been injected intravenously. It is the first biomedical application of gold nanotubes within a living organism. It was also shown that gold nanotubes were excreted from the body and therefore are unlikely to cause problems in terms of toxicity, an important consideration when developing nanoparticles for clinical use.

Study co-author Dr James McLaughlan, from the School of Electronic & Electrical Engineering at the University of Leeds, said: "This is the first demonstration of the production, and use for imaging and , of gold nanotubes that strongly absorb light within the 'optical window' of biological tissue.

"The nanotubes can be tumour-targeted and have a central 'hollow' core that can be loaded with a therapeutic payload. This combination of targeting and localised release of a therapeutic agent could, in this age of personalised medicine, be used to identify and treat cancer with minimal toxicity to patients."

The use of nanotubes in imaging and other biomedical applications is currently progressing through trial stages towards early clinical studies.

Explore further: Golden Nanotubes Detect Tumor Cells, Map Sentinel Lymph Nodes

More information: The research paper, 'Engineering Gold Nanotubes with Controlled Length and Near-Infrared Absorption for Theranostic Applications', is published in the journal Advanced Functional Materials on 13 February 2015.

Related Stories

Golden Nanotubes Detect Tumor Cells, Map Sentinel Lymph Nodes

September 24, 2009

(PhysOrg.com) -- Biomedical researchers at the University of Arkansas in Fayetteville and the University of Arkansas for Medical Sciences (UAMS) in Little Rock have developed a special contrast-imaging agent made of gold-coated ...

Nanovectors combine cancer imaging and therapy

February 9, 2015

Researchers at Imperial College London and the Laboratoire de chimie de la matière condensée de Paris (CNRS/Collège de France/UPMC) have designed and developed hybrid gold-silica nanoparticles, which are turning out to ...

Maximising solar cells

January 22, 2014

(Phys.org) —With silicon solar cells set to become a thing of the past, a Flinders University researcher has developed a novel computer system to find the best emerging carbon nanotubes to fuel the future.

Recommended for you

Clothing fabric keeps you cool in the heat

November 16, 2017

(Phys.org)—Researchers have designed a thermal regulation textile that has a 55% greater cooling effect than cotton, which translates to cooler skin temperatures when wearing clothes made of the new fabric. The material ...

Graphene water filter turns whisky clear

November 14, 2017

Previously graphene-oxide membranes were shown to be completely impermeable to all solvents except for water. However, a study published in Nature Materials, now shows that we can tailor the molecules that pass through these ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Steve 200mph Cruiz
not rated yet Feb 12, 2015
Now all you need to live with cancer is lots of money! Finally a cure!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.