Using a new laser process to custom shape optical fibers

May 5, 2015, Fraunhofer-Gesellschaft
Thanks to a new laser process, optical fibers can now be inserted into even smaller vein branches. In this prototype, the tip is inside the fiber probe. Credit: Fraunhofer IZM

Modern medicine relies on optical fibers to cauterize unhealthy veins in a minimally invasive way. Now, Fraunhofer researchers have developed a laser processing method that facilitates automated series manufacture of these fibers at a much finer quality than ever before. The scientists will present a fiber probe prototype manufactured using the new technique from May 19-21 at the measurement fair SENSOR+TEST 2015 in Nuremberg (Hall 12, Booth 537).

Venous disease is fairly widespread in Germany: According to the German Venous League, one in five women and one in six men suffer from , thrombosis or other vein problems. Endovenous laser vein therapy is one remedy. For this procedure, a plastic-coated optical fiber 0.5 millimeters in diameter is inserted into the affected blood vessel. Laser light is conducted through the middle of the fiber to the fiber tip. At a temperature of several hundred degrees, the emitted light cauterizes the tissue and causes the veins to collapse. To ensure that the light strikes the side walls of the vein directly, the fiber tip is tapered with a cone-shaped indentation that forms a reflective surface for the . A protective glass cap ensures that no blood deposits directly on the tip could change the optical characteristics of the laser light. The cap also protects the patient from any injury from the fiber tip.

In the LaserDELight project, researchers at the Fraunhofer Institute for Reliability and Microintegration IZM have developed a new, laser-based process for precisely shaping this sort of optical fiber. They use the FiberTurningLaser, which is a laser for glass processing. "The method enables the first automated series production," explains Dr. Henning Schröder from Fraunhofer IZM. Until now, producing the fibers required complicated mechanical and manual processes that not only took significantly longer, but cost more too. "What's more, replicating a suitable product is extremely difficult," adds Schröder. Automation ensures consistent high quality. The project is being funded by the German Federal Ministry of Education and Research BMBF.

Optical fiber tip inside the probe

Using a laser beam, the researchers can shape the tip. In a later production step, the protective cap is fused onto the fiber so that no additional fixture is needed. "The new process has demonstrated that it is more practical to fashion a cone-shaped indentation in the fiber than have a tapered shape like the tip of a pencil," explains Schröder. This offers yet another advantage: the cap on the fiber end is smaller because the tip of the cone is eliminated, making the fiber probe head in general more compact and versatile. Now, it can be inserted into even smaller vein branches.

With help from laser technology, the scientists are trying to achieve even finer dimensions, which can no longer be produced by hand: the goal is optical fibers with a diameter of only 100-200 micrometers. These could open up new applications in the area of optical sensors, for instance as micro optics for visible light communication (VLC) – a technology for optical data transmission. To put it simply, for VLC, the process is the reverse of the endovenous procedure. "The fiber tip collects data from the environment and sends it back through the fiber to a detector," Schröder explains. This detector – a photodiode or CMOS chip – converts the optical information into electrical signals for evaluation.

Explore further: Conical fiber tips best for cutting efficacy in oral surgery

Related Stories

Subwavelength optical fibers to diffuse light

October 27, 2014

Researchers at the Femto-ST Institute, working in collaboration with colleagues from the Charles Fabry Laboratory (CNRS/Institut d'Optique Graduate School), have just discovered a new type of light diffusion in tiny optical ...

Atoms queue up for quantum computer networks

December 24, 2014

In order to develop future quantum computer networks, it is necessary to hold a known number of atoms and read them without them disappearing. To do this, researchers from the Niels Bohr Institute have developed a method ...

Glass fiber that brings light to standstill

April 8, 2015

Light is an extremely useful tool for quantum communication, but it has one major disadvantage: it usually travels at the speed of light and cannot be kept in place. A team of scientists at the Vienna University of Technology ...

New class of tiny chip-based thermometers

April 29, 2015

A new class of tiny chip-based thermometers being developed by PML's Sensor Science Division has the potential to revolutionize the way temperature is gauged.

Recommended for you

Japan to make crater on asteroid to get underground samples

March 18, 2019

Japan's space agency said Monday that its Hayabusa2 spacecraft will follow up last month's touchdown on a distant asteroid with another risky mission—dropping an explosive on the asteroid to make a crater and then collect ...

Bright X-ray galactic nuclei

March 18, 2019

All massive galaxies are believed to host supermassive black holes (SMBH) at their centers that grow by accreting mass from their environment. The current picture also imagines that the black holes grow in size as their host ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.