New paint-like coating makes tough surfaces that repel spills, scratches (w/ Video)

March 5, 2015
Water (dyed blue) was framed in the drawing of superhydrophobic materials, forming a 3D superhydrophobic painting. Credit: Yao Lu - UCL

A new paint that makes robust self-cleaning surfaces has been developed by a team led by UCL researchers. The coating can be applied to clothes, paper, glass and steel and when combined with adhesives, maintains its self-cleaning properties after being wiped, scratched with a knife and scuffed with sandpaper.

Self-cleaning surfaces work by being extremely repellent to water but often stop working when they are damaged or exposed to oil. The new creates a more resilient that is resistant to everyday wear and tear, so could be used for a wide range of real-world applications from clothing and cars, say the researchers.

First author Yao Lu (UCL Chemistry), said: "Being waterproof allows materials to self-clean as water forms marble-shaped droplets that roll over the surface, acting like miniature vacuum cleaners picking up dirt, viruses and bacteria along the way. For this to happen, the surface must be rough and waxy, so we set out to create these conditions on hard and soft surfaces by designing our own paint and combining it with different adhesives to help the surfaces withstand damage."

The study, involving researchers from UCL, Imperial College London and Dalian University of Technology (China) and published today in Science, shows how the new paint made from coated titanium dioxide nanoparticles can give a wide-range of materials self-cleaning properties, even during and after immersion in oil and following damage to the surface.

The video will load shortly.
Artificial rain (dyed blue) was dropped on dip-coated glass, steel, cotton wool and filter paper surfaces. Credit: Yao Lu - UCL

Different coating methods were used to create the water repellent surfaces, depending on the material. An artist's spray-gun was used to coat glass and steel, dip- for cotton wool and a syringe to apply the paint onto paper.

All the materials became waterproof and self-cleaning as water droplets of different sizes were seen bouncing instead of wetting the surface, removing the dirt applied by the researchers. This was maintained after damage was inflicted on the surfaces.

Time-lapse photographs of water droplets bouncing on the treated glass, steel, cotton wool and filter paper surfaces (droplet size: ca 6.3 ± 0.2 μL). Credit: Lu Yao, UCL

Mr Lu added: "Our paint worked extremely well for a variety of surfaces in tough conditions which were designed to simulate the wear and tear of materials in the real-world. For example, car paint frequently gets scuffed and scratched and we wanted to make sure our paint would survive that. As well as practical uses, the paint could also be used creatively to make art with water which is something I have been exploring in my own time."

The experiments were filmed to show the behaviour of the treated surfaces against controls. Examples include videos of treated cotton-wool being dipped into blue coloured water and emerging pristine white with no trace of contamination, and treated paper remaining dry and clean after being exposed to dirt and water.

Co-author, Professor Claire Carmalt, who is Professor of Inorganic Chemistry at UCL Chemistry, said: "The biggest challenge for the widespread application of self-cleaning surfaces is finding a way to make them tough enough to withstand everyday damage. The surfaces tend to be mechanically weak and so rub off easily, but by pairing our paint with different adhesives, we've shown it is possible to make a robust self-cleaning surface. We used materials that are readily available so our methods can be scaled-up for industrial applications."

Corresponding author, Professor Ivan Parkin, who is Professor of Chemistry and Head of UCL Chemistry, said: "Our work aims to characterise new materials at a very small scale so we can see how best to use them to improve our daily lives. The new paint fits into a broader portfolio of surfaces we are developing for different purposes, including antimicrobial coatings to combat hospital acquired infections, and we hope its discovery advances the widespread adoption of self-cleaning surfaces."

Explore further: Nissan develops first 'self-cleaning' car prototype (w/ Video)

More information: Robust self-cleaning surfaces that function when exposed to either air or oil , Science, www.sciencemag.org/lookup/doi/ … 1126/science.aaa0946

Related Stories

Conductive paint lands in pens and pots for creatives

May 26, 2013

London-based Bare Conductive Ltd. makes electrically conductive paint called Bare Paint. The substance allows the painting of "liquid wiring" on any surface. Except for skin, you can apply its paint on walls and assorted ...

Recommended for you

Clothing fabric keeps you cool in the heat

November 16, 2017

(Phys.org)—Researchers have designed a thermal regulation textile that has a 55% greater cooling effect than cotton, which translates to cooler skin temperatures when wearing clothes made of the new fabric. The material ...

Graphene water filter turns whisky clear

November 14, 2017

Previously graphene-oxide membranes were shown to be completely impermeable to all solvents except for water. However, a study published in Nature Materials, now shows that we can tailor the molecules that pass through these ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

JoeBlue
not rated yet Mar 05, 2015
Shame they haven't done any thermal research yet.
mreda14
not rated yet Mar 07, 2015
Wetting of rough surfaces is one of the most active fields of research as the combination of roughness and surface chemistry has shown to greatly modify the properties of a surface from superhydrophilicity to superhydrophobicity. For instance, a rough surface with hydrophobic coating promotes the entrapment of air or vapour within asperities, resulting in remarkable macroscopic properties, such as a large contact angle and self-cleaning features, that are collectively known as superhydrophobicity. This idea was developed long time ago (1944) and known as Cassie–Baxter model which was used to devlope self cleaning textile.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.