Using nanoparticles to better protect industrial applications

November 20, 2014, CORDIS
Using nanoparticles to better protect industrial applications

An innovative high temperature multi-purpose coating – designed to protect industrial components against heat and oxidation – is currently being trialled on various applications. The coating, which has the potential to benefit numerous industrial sectors, is the result of pioneering work carried out by the EU-funded PARTICOAT project.

High-temperature coatings are widely used in the power generation and aerospace industries as well as in engines and exhaust systems. They are also increasingly required for construction and in many electronic applications. The EU-funded PARTICOAT , which was formally completed in 2012, demonstrated the potential advantages of using nanoparticles to develop an innovative high-temperature coating system. Scientists from the Fraunhofer Institute in Germany, which coordinated the original PARICOAT project, are now looking at ways to commercialise their findings.

The EU-funded project, which began in 2008, successfully developed micro-scaled spherical aluminium particles that can be deposited by spraying, brushing or gel application. At a certain temperature, these particles then bond to each other and to the surface of an alloy, forming hollow spheres. These hollow spheres are filled with gas, which is highly efficient in terms of heat insulation, as gases don't conduct heat as well as solids do.

Simultaneously, a layer is formed below the topcoat, which acts as a corrosion protection layer. The specific microscopic structure of the coating can be changed through altering the particle size or treating at a specific , making the innovation attractive to a range of possible .

The scientists behind the development have since been working on ways of economically manufacturing this insulating coating, which is just a few micrometres thick. The process has been refined to the extent that coating layers can be produced in the required thickness. Aluminium particles are mixed with a viscous liquid bonding agent, which produces a substance similar to a paint or slurry. This can then be applied to a metallic component.

Lab and field tests have demonstrated that the is not only highly effective, but also offers cost reductions when compared to other state-of-the-art coatings. PARTICOAT coatings also provide improved flame resistance, which is of particular interest for the insulation of electrical conductors and in the construction of buildings.

The project received EUR 4.8 million in EU funding and is a good example of effective EU investment in nanotechnology, which involves the fine-tuning of materials at the atomic, molecular and macromolecular scales. As demonstrated by the project, nanotechnology offers great potential in the development of new products, helping to boost industry and achieve sustainable growth. This is why the EU is investing a great deal of money in research and development, in order to ensure that the right conditions for realising nanotechnology's full potential are established.

Explore further: A coating that protects against heat and oxidation

More information: For further information, please visit:

Related Stories

A coating that protects against heat and oxidation

November 4, 2014

Researchers have developed a coating technique that they plan to use to protect tur- bine engine and waste incinerator components against heat and oxidation. A topcoat from micro-scaled hollow aluminium oxide spheres provides ...

Greener furnaces for energy intensive industries

June 11, 2014

Energy-intensive industries play a crucial role in boosting Europe's growth and employment, but strong climate-related policies can undermine their competitiveness. New, cleaner technologies are needed, and an EU project ...

Recommended for you

Field-responsive mechanical metamaterials (FRMMs)

December 11, 2018

In a recent study published in Science Advances, materials scientists Julie A. Jackson and colleagues presented a new class of materials architecture called field-responsive mechanical metamaterials (FRMM). The FRMMs exhibit ...

Researchers develop smartphone-based ovulation test

December 11, 2018

Investigators from Brigham and Women's Hospital are developing an automated, low-cost tool to predict a woman's ovulation and aid in family planning. Capitalizing on advancements in several areas, including microfluidics, ...

CRISPR method for conditional gene regulation

December 11, 2018

A team of engineers at the University of Delaware has developed a method to use CRISPR/Cas9 technology to set off a cascade of activities in cells, a phenomenon known as conditional gene regulation. Their method, described ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.