New e-Incubator enables real-time imaging of bioengineered tissues in controlled unit

November 5, 2014, Mary Ann Liebert, Inc
Credit: Mary Ann Liebert, Inc., publishers

The e-incubator, an innovative miniature incubator that is compatible with magnetic resonance imaging (MRI), enables scientists to grow tissue-engineered constructs under controlled conditions and to study their growth and development in real-time without risk of contamination or damage. Offering the potential to test engineered tissues before human transplantation, increase the success rate of implantation, and accelerate the translation of tissue engineering methods from the lab to the clinic, the novel e-incubator is described in an article in Tissue Engineering, Part C.

"In the article "The e-Incubator: A Magnetic Resonance Imaging-Compatible Mini Incubator" , Shadi Othman, PhD, Karin Wartella, PhD, Vahid Khalilzad Sharghi, and Huihui Xu, PhD, University of Nebraska-Lincoln, present the results of a validation study using the device to culture tissue-engineered bone constructs for 4 weeks. The e- is a standalone unit that automatically detects and regulates internal conditions such as temperature, carbon dioxide levels, and pH via a microcontroller. It performs media exchange to feed the cultures and remove waste products. The current design is compatible with MRI to monitor the constructs without removing them from the incubator. With proper adjustments, compatibility with other imaging technologies including computed tomography (CT) and optical imaging is also possible."

""Calibratable, hands-free tissue development environments are becoming increasingly important for the engineering of implantable tissues," says Tissue Engineering Co-Editor-in-Chief Peter C. Johnson, MD, Vice President, Research and Development, Avery Dennison Medical Solutions of Chicago, IL and President and CEO, Scintellix, LLC, Raleigh, NC. "In this new development, noninvasive imaging modalities are added to the spectrum of sensing and environmental capabilities that heretofore have included temperature, humidity, light, physical force, and electromagnetism. This represents a solid advance for the field.""

Explore further: Improving imaging of cancerous tissues by reversing time

More information: The article is available free on the Tissue Engineering website at http://online.liebertpub.com/doi/full/10.1089/ten.tec.2014.0273 until December 5, 2014."

Related Stories

Improving imaging of cancerous tissues by reversing time

November 2, 2014

As a child, it was fascinating to put a flashlight up to our palms to see the light shine through the hand. Washington University in St. Louis engineers are using a similar idea to track movement inside the body's tissues ...

A 'Clear' choice for clearing 3-D cell cultures

September 3, 2014

Because Brown University biomedical engineering graduate student Molly Boutin needed to study how neural tissues grow from stem cells, she wanted to grow not just a cell culture, but a sphere-shaped one. Cells grow and interact ...

Recommended for you

Birds have time-honored traditions, too

June 20, 2018

What makes human cultural traditions unique? One common answer is that we are better copycats than other species, which allows us to pass our habits and ways of life down through the generations without losing or forgetting ...

World's first known manta ray nursery discovered

June 19, 2018

A graduate student at Scripps Institution of Oceanography at the University of California San Diego and colleagues from NOAA's Office of National Marine Sanctuaries have discovered the world's first known manta ray nursery.

Road rules for gene transfer are written in DNA

June 19, 2018

A new discovery suggests that bacteria's ability to transfer genes, like those associated with antibiotic resistance, are governed by a previously unknown set of rules that are written in the DNA of the recipient.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.