Improving imaging of cancerous tissues by reversing time

November 2, 2014
Improving imaging of cancerous tissues by reversing time

As a child, it was fascinating to put a flashlight up to our palms to see the light shine through the hand. Washington University in St. Louis engineers are using a similar idea to track movement inside the body's tissues to improve imaging of cancerous tissues and to develop potential treatments.

Lihong Wang, PhD, the Gene K. Beare Distinguished Professor of Biomedical Engineering at the School of Engineering & Applied Science is applying a novel time-reversal technology that allows researchers to better focus in tissue, such as muscles and organs.

Current high-resolution optical imaging technology allows researchers to see about 1 millimeter deep into the body. Beyond that, the light scatters and obscures the features, which is why we can't see bones or tissue in the hand with a flashlight. To overcome this, Wang and his lab developed , which combines light with acoustic waves, or sound, to form a sharper image, even several centimeters into the skin.

In new research published Nov. 2 in Nature Photonics Advance Online Edition, Wang is now using a new technology called time-reversed adapted-perturbation (TRAP) optical focusing, which sends guiding light into tissue to seek movement. The light that has traversed stationary tissue appears differently than light that has moved through something moving, such as blood. By taking two successive images, they can subtract the light through stationary tissue, retaining only the scattered light due to motion. Then, they send that light back to its original source via a process called time-reversal so that it becomes focused once back in the tissue.

"This can potentially be used in imaging or therapy," Wang says. "For example, focusing pulsed light on port wine stains, which are excessive growth of blood vessels, could remove the stains without damaging the surrounding normal skin."

The video will load shortly.
This video shows dynamic focusing onto a moving target inside scattering media. Credit: Lihong Wang, Ph.D.

In 2011, Wang's lab was the first to use ultrasound focusing to provide a virtual, non-invasive internal guide star that allowed them to focus on anything moving in . But TRAP focusing is much more efficient in tracking moving targets, Wang says in the new research. TRAP focusing can enhance and contrast by redistributing and concentrating light on the targets, allowing for images to be taken from greater depths.

Explore further: High-intensity sound waves may aid regenerative medicine

More information: Ma C, Xu X, Liu Y, Wang LV. Time-reversed adapted perturbation (TRAP) optical focusing onto dynamic objects inside scattering media. Nature Photonics, Advanced Online Edition, Nov. 2, 2014. DOI: 10.1038/nphoton.2014.251

Related Stories

High-intensity sound waves may aid regenerative medicine

October 30, 2014

Researchers at the University of Washington have developed a way to use sound to create cellular scaffolding for tissue engineering, a unique approach that could help overcome one of regenerative medicine's significant obstacles. ...

Recommended for you

Two teams independently test Tomonaga–Luttinger theory

October 20, 2017

(Phys.org)—Two teams of researchers working independently of one another have found ways to test aspects of the Tomonaga–Luttinger theory that describes interacting quantum particles in 1-D ensembles in a Tomonaga–Luttinger ...

Using optical chaos to control the momentum of light

October 19, 2017

Integrated photonic circuits, which rely on light rather than electrons to move information, promise to revolutionize communications, sensing and data processing. But controlling and moving light poses serious challenges. ...

Black butterfly wings offer a model for better solar cells

October 19, 2017

(Phys.org)—A team of researchers with California Institute of Technology and the Karlsruh Institute of Technology has improved the efficiency of thin film solar cells by mimicking the architecture of rose butterfly wings. ...

Terahertz spectroscopy goes nano

October 19, 2017

Brown University researchers have demonstrated a way to bring a powerful form of spectroscopy—a technique used to study a wide variety of materials—into the nano-world.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.