Bioinspired catalyst splits water

August 8, 2014, RIKEN
Catalysts based on manganese (black substance) can mimic the splitting of water into oxygen and hydrogen that occurs in plants inside the photosystem II protein cluster responsible for photosynthesis. Credit: Reproduced from Ref. 1 and licensed under CC BY-NC-ND 4.0 © 2014 A. Yamaguchi et al.

Plants use photosynthesis to convert carbon dioxide and water into sugars and oxygen. The process starts in a cluster of manganese, calcium and oxygen atoms at the heart of a protein complex called photosystem II, which splits water to form oxygen gas, protons and electrons.

Researchers have attempted to develop synthetic catalysts that mimic this cluster, using light or electricity to convert into fuels such as hydrogen gas. Unlike plants, however, these artificial catalysts can only split alkaline water, which makes the process less sustainable.

Ryuhei Nakamura and colleagues at the RIKEN Center for Sustainable Resource Science have now developed a manganese oxide-based catalyst system that can split water efficiently at neutral pH. "Nature utilizes a safe, clean and abundant form of water to make fuels, thereby realizing sustainable ecosystems in the true sense," says Nakamura. "Catalysts that utilize water at a neutral pH as a resource for renewable energy would become the foundation for sustainable human societies."

In photosystem II, charged manganese (Mn) ions gradually give up electrons as they tear protons away from water molecules. This causes manganese in the 2+ and 3+ valence states to become oxidized, resulting in Mn4+ ions. Although the less-oxidized Mn3+ ions are quite stable in photosystem II, Nakamura and his colleagues previously found that they are unstable in synthetic manganese oxide catalysts at neutral pH.

To overcome this instability, the researchers sped up the regeneration of Mn3+ ions, which usually occurs when a water–Mn2+ complex loses a proton and an electron in two separate steps. Nakamura's team realized that ring-shaped organic molecules called pyridines could help those steps to happen at the same time—a process likely promoted by amino acids in photosystem II. They found that the manganese oxide catalyst produced 15 times more oxygen at neutral pH when used in conjunction with a pyridine called 2,4,6-trimethylpyridine.

The team also tested the reaction in deuterated water, which contains a heavier isotope of hydrogen than normal water. The catalyst generated oxygen much more slowly in the presence of 2,4,6-trimethylpyridine, suggesting that removal of a proton from the water–Mn2+ complex is the key step that determines the overall rate of the water-splitting reaction.

As pyridines would not be suitable for large-scale water splitting because they are potential environmental pollutants, the team now hopes to identify safer alternative proton-removing molecules that could be immobilized onto the surface of the catalyst to enhance its activity.

Explore further: Insights from nature for more efficient water splitting

More information: Yamaguchi, A., Inuzuka, R., Takashima, T., Hayashi, T., Hashimoto, K. & Nakamura, R. Regulating proton-coupled electron transfer for efficient water splitting by manganese oxides at neutral pH. Nature Communications 5, 4256 (2014). DOI: 10.1038/ncomms5256

Related Stories

Insights from nature for more efficient water splitting

June 30, 2014

Water splitting is one of the critical reactions that sustain life on earth, and could be a key to the creation of future fuels. It is a key in the process of photosynthesis, through which plants produce glucose and oxygen ...

Molecular snapshots of oxygen formation in photosynthesis

July 11, 2014

Researchers from Umeå University, Sweden, have explored two different ways that allow unprecedented experimental insights into the reaction sequence leading to the formation of oxygen molecules in photosynthesis. The two ...

Improving the cost and efficiency of renewable energy storage

July 17, 2014

A major challenge in renewable energy is storage. A common approach is a reaction that splits water into oxygen and hydrogen, and uses the hydrogen as a fuel to store energy. The efficiency of 'water splitting' depends heavily ...

Chemists develop novel catalyst with two functions

July 9, 2014

Chemists at the Ruhr-Universität Bochum have made a decisive step towards more cost-efficient regenerative fuel cells and rechargeable metal-air batteries. They developed a new type of catalyst on the basis of carbon, which ...

Recommended for you

Researchers report breakthrough in ice-repelling materials

January 15, 2019

Icy weather is blamed for multibillion dollar losses every year in the United States, including delays and damage related to air travel, infrastructure and power generation and transmission facilities. Finding effective, ...

Research finds serious problems with forensic software

January 15, 2019

New research from North Carolina State University and the University of South Florida finds significant flaws in recently released forensic software designed to assess the age of individuals based on their skeletal remains. ...

The secret to Rembrandt's impasto unveiled

January 15, 2019

Impasto is thick paint laid on the canvas in an amount that makes it stand from the surface. The relief of impasto increases the perceptibility of the paint by increasing its light-reflecting textural properties. Scientists ...

Researchers gain control over soft-molecule synthesis

January 14, 2019

By gaining control over shape, size and composition during synthetic molecule assembly, researchers can begin to probe how these factors influence the function of soft materials. Finding these answers could help advance virology, ...

Marine bacterium sheds light on control of toxic metals

January 14, 2019

An ocean-dwelling bacterium has provided fresh insights into how cells protect themselves from the toxic effects of metal ions such as iron and copper, in research led by the University of East Anglia (UEA).

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Shootist
2 / 5 (3) Aug 08, 2014
Nuclear fission reactors can split H2O as well. Get cracking..
wasp171
3 / 5 (2) Aug 08, 2014
From the article above:
"Although the less-oxidized Mn3+ ions are quite stable in photosystem II"

This is quite wrong!
Mn+3 is MORE oxidized than Mn+2!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.