Achieving chemical-free natural cosmetics with the power of enzymes

July 23, 2014

A EUR 7 million EU-funded project has been launched with the intention of replacing chemical cosmetic production techniques with eco-friendly alternatives. By doing so, the OPTIBIOCAT project hopes to provide the natural cosmetics sector with the necessary technical sophistication to meet growing consumer demand for natural, environmentally friendly products.

The European natural cosmetic market has experienced exceptional growth in recent years, driven largely by consumer demand for organic ingredients and greater awareness of the need to avoid harmful substances such as parabens. As a result, drugstores, supermarkets, and even discount stores have introduced private label natural cosmetic products, bringing what was once niche into the mainstream.

According to analysts, the global demand for natural cosmetics was over EUR 5.8 billion in 2012 and is expected to reach an incredible EUR 10.1 billion by 2018.

But despite this, the total share of natural cosmetics sales as a proportion of overall of cosmetic sales in Europe remains relatively low. One reason for this is the absence of harmonised standards, which means that legitimate products have to compete against conventional cosmetics that can still be labelled as 'natural' because they happen to contain some natural ingredients. A second reason is the lack of viable alternatives to chemical production techniques. This is where the EU-funded OPTIBIOCAT comes in.

Building on a diverse consortium of 16 partners from eight European countries, OPTIBIOCAT, which began in 2013 and runs until 2017, will equip companies with the knowledge and expertise to introduce environment-friendly processes and use new . This will be achieved primarily through using enzymes - cellular catalysts that control reactions that take place in cells and increase the rate at which these reactions occur - in place of conventional chemicals.

These so-called biocatalysts require fewer production steps and can function in lower temperatures, thereby reducing energy requirements and unwanted side effects such as odour. In addition, enzymes are specific for the type of reaction they catalyse - there are no by-products or waste.

Interestingly, one area where the application of enzymes has significant potential as an ingredient is in skin protection products. Enzymes have been identified as having the ability to capture free radicals, preventing damage to the skin caused by environmental pollution, smoke, sunlight and other harmful factors.

The project will also test enzymes to see if they have potential uses in other industrial sectors such as the food ingredients industry. Certain enzymes can be used to produce food antioxidants, and may also have applications for cancer drugs. In the final development step of the project, the potential to scale up and optimise the fermentation process for the production of enzymes will be examined, while the allergenicity and safety of new compounds will be examined.

At the end of the project, a portfolio of new novel biocatalyst compounds will be developed, which will most likely include 50 fungal and 500 bacterial esterases (a special kind of ), bringing the environmentally responsible production of natural cosmetic ingredients fully into the mainstream. The potential industrial benefits of this project are therefore huge.

Explore further: 'Natural' moisturisers can cause food allergies

Related Stories

A multidisciplinary approach to advancing drug development

July 14, 2014

By drawing together expertise from across a range of fields, the Eindhoven University of Technology's Institute for Complex Molecular Systems is on the verge of a breakthrough that could have significant implications for ...

Tweaking Mother Nature's chemistry box

September 27, 2013

Natural enzymes are very clever molecular machines. They are the catalyst for many of nature's chemical transformations. And the conditions they need to perform their task are rather precisely defined. There is a need to ...

Recommended for you

Discovery lights path for Alzheimer's research

October 19, 2017

A probe invented at Rice University that lights up when it binds to a misfolded amyloid beta peptide—the kind suspected of causing Alzheimer's disease—has identified a specific binding site on the protein that could facilitate ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.