Watching nanoscale fluids flow

June 27, 2014 by Kimm Fesenmaier, California Institute of Technology

This artistic rendering depicts fluid-filled nanotubes changing with time. Caltech researchers used four-dimensional electron microscopy to visualize and monitor the flow of molten lead within single zinc oxide nanotubes in real time and space. Credit: Caltech
(Phys.org) —At the nanoscale, where objects are measured in billionths of meters and events transpire in trillionths of seconds, things do not always behave as our experiences with the macro-world might lead us to expect. Water, for example, seems to flow much faster within carbon nanotubes than classical physics says should be possible. Now imagine trying to capture movies of these almost imperceptibly small nanoscale movements.

Researchers at Caltech now have done just that by applying a new imaging technique called four-dimensional (4D) to the nanofluid dynamics problem. In a paper appearing in the June 27 issue of Science, Ahmed Zewail, the Linus Pauling Professor of Chemistry and professor of physics, and Ulrich Lorenz, a postdoctoral scholar in chemistry, describe how they visualized and monitored the flow of molten lead within a single zinc oxide nanotube in real time and space.

The 4D microscopy technique was developed in the Physical Biology Center for Ultrafast Science and Technology at Caltech, created and directed by Zewail to advance understanding of the fundamental physics of chemical and biological behavior. 

In 4D microscopy, a stream of ultra-fast-moving electrons bombards a sample in a carefully timed manner. Each electron scatters off the sample, producing a still image that represents a single moment, just a femtosecond—or a millionth of a billionth of a second—in duration. Millions of the still images can then be stitched together to produce a digital movie of nanoscale motion.

In the new work, Lorenz and Zewail used single laser pulses to melt the lead cores of individual zinc oxide nanotubes and then, using 4D microscopy, captured how the hot pressurized liquid moved within the tubes—sometimes splitting into multiple segments, producing tiny droplets on the outside of the tube, or causing the tubes to break. Lorenz and Zewail also measured the friction experienced by the liquid in the nanotube.

"These observations are particularly significant because visualizing the behavior of fluids at the nanoscale is essential to our understanding of how materials and biological channels effectively transport liquids," says Zewail. In 1999, Zewail won the Nobel Prize for his development of femtosecond chemistry.

The paper is titled "Observing liquid flow in nanotubes by 4D electron microscopy."

Explore further: Unique 4D microscope captures motion of DNA structures in space and time

More information: "Observing liquid flow in nanotubes by 4D electron microscopy." Lorenz, Ulrich J. and Zewail, Ahmed H. (2014) Observing liquid flow in nanotubes by 4D electron microscopy. Science, 344 (6191). pp. 1496-1500. ISSN 0036-8075. resolver.caltech.edu/CaltechAU … S:20140620-095420088

Related Stories

Moving microscopic vision into another new dimension

June 29, 2011

Scientists who pioneered a revolutionary 3-D microscope technique are now describing an extension of that technology into a new dimension that promises sweeping applications in medicine, biological research, and development ...

Caltech scientists film photons with electrons

December 16, 2009

(PhysOrg.com) -- Techniques recently invented by researchers at the California Institute of Technology -- which allow the real-time, real-space visualization of fleeting changes in the structure of nanoscale matter -- have ...

Forest of carbon nanotubes (w/ Video)

June 27, 2014

This image shows a 'forest' of carbon nanotubes – thousands upon thousands of tiny rolls of carbon atoms, grown on a scrap of copper foil. James Dolan explains how easy it is to run across beautiful scenery such as this ...

Recommended for you

Solving mazes with single-molecule DNA navigators

November 16, 2018

The field of intelligent nanorobotics is based on the great promise of molecular devices with information processing capabilities. In a new study that supports the trend of DNA-based information carriers, scientists have ...

A way to make batteries almost any shape desired

November 16, 2018

A team of researchers from Korea Advanced Institute of Science and Technology, Harvard University and Korea Research Institute of Chemical Technology has developed a way to make batteries in almost any shape that can be imagined. ...

'Smart skin' simplifies spotting strain in structures

November 15, 2018

Thanks to one peculiar characteristic of carbon nanotubes, engineers will soon be able to measure the accumulated strain in an airplane, a bridge or a pipeline – or just about anything – over the entire surface or down ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.