New wireless network to revolutionise soil testing

March 13, 2014, University of Southampton

A University of Southampton researcher has helped to develop a wireless network of sensors that is set to revolutionise soil-based salinity measuring.

Dr Nick Harris, from Electronics and Electrical Engineering, worked with a group of professors from the University of Western Australia (UWA) to produce the revolutionary sensor that can carry out non-destructive testing of samples.

The sensor is capable of measuring the (salt) in the soil moisture and linking up with other to create a wireless network that can collate and relay the measurement readings. The network can also control the time intervals at which measurements are taken.

The sensor is placed in the soil and measures the chloride levels in the soil moisture in a non-destructive way. These make up a high proportion of the overall soil salinity.

Dr Harris says: "Traditionally, soil-based measurements involve taking samples and transporting them to the laboratory for analysis. This is very labour and cost intensive and therefore it usually means spot checks only with samples being taken every two to three months. It also doesn't differentiate between chloride in crystallised form and chloride in dissolved form. This can be an important difference as plants only 'see' chloride in the .

"The removal of a soil sample from its natural environment also means that the same sample can only be measured once, so the traditional (destructive) method is not suited to measuring changes at a point over a period of time.."

The new sensors are connected to a small unit and can be 'planted' in the ground and left to their own devices. The limiting factor for lifetime is usually the sensor. However, these sensors are expected to have a lifetime in excess of one year. The battery-powered unit can transmit data and information by short range radio, Bluetooth, satellite or , as well as allowing data to be logged to a memory card to be collected later.

The novel device allows up to seven sensors to be connected at a time to a single transmitter allowing multi-point measurements to be simply taken.

Dr Harris adds: "These soil-based chloride sensors can benefit a wide range of applications. Large parts of the world have problems with salt causing agricultural land to be unusable, but the new sensors allow the level of salt to be measured in real time, rather than once every few months as was previously the case.

"At plant level, probes can be positioned at continuous levels of depth to determine the salt concentration to which roots are exposed and whether this concentration changes with the depth of the soil or in different weather conditions. We can also measure how well a plant performs at a particular concentration and change the salt content for a few days and observe the effects.

"On a bigger scale, sensors could be placed at different locations at catchment scale to observe any changes in the level of salinity within a field over time, having a direct impact on irrigation strategies. We have already been able to make some interesting observations on real world chloride concentration changes over just 24 hour periods, illustrating the dangers of relying on single point, single time measurements."

Explore further: A sensor detects salt on the road to avoid excess

Related Stories

A sensor detects salt on the road to avoid excess

January 29, 2014

Engineers at Carlos III University in Madrid, Spain, have designed an optical sensor that detects how much salt is on road surfaces in real time. This avoids the need to spread the substance excessively, because although ...

New micro water sensor can aid growers

October 11, 2013

( —Crop growers, wine grape and other fruit growers, food processors and even concrete makers all benefit from water sensors for accurate, steady and numerous moisture readings. But current sensors are large, may ...

SMOS maps record soil water before flood

June 13, 2013

As parts of central Europe are battling with the most extensive floods in centuries, forecasters are hoping that ESA's SMOS satellite will help to improve the accuracy of flood prediction in the future.

Recommended for you

Jet stream changes since 1960s linked to more extreme weather

January 12, 2018

Increased fluctuations in the path of the North Atlantic jet stream since the 1960s coincide with more extreme weather events in Europe such as heat waves, droughts, wildfires and flooding, reports a University of Arizona-led ...

Global warming will expose millions more to floods

January 11, 2018

Global warming is expected to unleash more rain, exposing millions more people to river flooding particularly in the United States and parts of Asia, Africa and central Europe, researchers said Wednesday.

Maps that show travel times to cities all across the globe

January 11, 2018

An international team of researchers, including a representative from Google, has created a color-coded map of the planet that shows travel times to cities from other places. In their paper published in the journal Nature, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.