Smart hydrogels deliver medicine on demand

January 15, 2014 by Karen B. Roberts
UD researchers have developed a "smart" gel that can deliver medicine on demand in response to force.

(Phys.org) —Researchers at the University of Delaware have developed a "smart" hydrogel that can deliver medicine on demand, in response to mechanical force.

Over the past few decades, smart hydrogels have been created that respond to pH, temperature, DNA, light and other stimuli.

"The idea of a smart hydrogel that can release medicine over time is not new," said Xinqiao Jia, UD professor of and . "What's new is our ability to have medicine released in response to force—a major challenge for people with and other 'wear and tear' injuries that compromise a person's ability to perform everyday activities."

Osteoarthritis is a chronic condition that affects nearly 27 million Americans, according to the Arthritis Foundation. It is characterized by soreness or stiffness in joints following inactivity or overuse, and pain that worsens after activity or as the day progresses.

The researchers believe the hyaluronic acid-based hydrogels developed at UD can be injected into an injury site—such as a knee or hip joint—and that as a patient walks or participates in therapeutic exercise, the walking motion will cause accelerated release of the drug, reducing inflammation and pain.

Testing under laboratory conditions has confirmed that as the UD-developed hydrogel is compressed, the encapsulated drugs are discharged into the surrounding environment. Preliminary cell testing confirmed the anti-inflammatory activity of the released drug molecules.

UD researchers, led by Xinqiao Jia, have developed a "smart" gel that can deliver medicine on demand in response to force.

Now the team is collaborating with colleagues at Rush University in Chicago to test the hydrogels in animal models. Early results indicate that the gel is biocompatible, which Jia said is because hyaluronic acid is a naturally occurring substance in cartilage, making it more readily accepted in the body.

She also said the hydrogel could help with a variety of conditions beyond osteoarthritis, including ligament tears or other injury areas under high tension.

"I have even considered whether we can leverage this hydrogel platform to reduce inflammation in patients with vocal fold disorders," Jia said.

UD collaborators on the project include Darrin Pochan, professor of and engineering; Chandran Sabanayagam, an associate scientist at the Delaware Biotechnology Institute; and Longxi Xiao and Zhixiang Tong, Jia's former students, and Yingchao Chen, a current student.

An expert in microscopy and characterization techniques, Sabanayagam's role was to understand exactly how the gels behave under and how the drug diffuses under pressure—important considerations in treatment efficacy.

The research team is now investigating whether future iterations of the hydrogel can be imbued with properties that would stimulate tissue regeneration and repair.

The researchers published their findings in Biomacromolecules, a publication of the American Chemical Society (ACS).

Explore further: Osteoarthritis medicine delivered on-demand

Related Stories

Osteoarthritis medicine delivered on-demand

November 6, 2013

Scientists are reporting development of a squishy gel that when compressed—like at a painful knee joint—releases anti-inflammatory medicine. The new material could someday deliver medications when and where osteoarthritis ...

Researchers seek to improve drug delivery with hydrogels

November 2, 2012

Researchers in Japan have developed a technique which allows them to control and target drug delivery to specific sites of the body at specific times, thus reducing side effects and improving treatment dramatically. The results ...

Recommended for you

Scientific advances can make it easier to recycle plastics

November 17, 2017

Most of the 150 million tons of plastics produced around the world every year end up in landfills, the oceans and elsewhere. Less than 9 percent of plastics are recycled in the United States, rising to about 30 percent in ...

The spliceosome—now available in high definition

November 17, 2017

UCLA researchers have solved the high-resolution structure of a massive cellular machine, the spliceosome, filling the last major gap in our understanding of the RNA splicing process that was previously unclear.

Ionic 'solar cell' could provide on-demand water desalination

November 15, 2017

Modern solar cells, which use energy from light to generate electrons and holes that are then transported out of semiconducting materials and into external circuits for human use, have existed in one form or another for over ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.