X-rays reveal another feature of high-temperature superconductivity

November 24, 2013
This image shows the result of diffuse scattering on the high-temperature superconductor, which is the first of the two stages in the experiment. The coloured areas enable to identify the wavelength of the phonons where the coupling with the electrons is taking place. Credit: MPI Stuttgart/M. Le Tacon

Classical and high-temperature superconductors differ hugely in the value of the critical temperatures at which they lose all electrical resistance. Scientists have now used powerful X-rays to establish another big difference: high-temperature superconductivity cannot be accounted for by the mechanism that leads to conventional superconductivity. As this mechanism called "electron-phonon coupling" contributes only marginally to the loss of electrical resistance, other scenarios must now be developed to explain high-temperature superconductivity. The results are published on November 24, 2013 in Nature Physics.

The team of scientists was led by Mathieu Le Tacon and Bernhard Keimer from the Max-Planck-Institute for Solid State Research in Stuttgart (Germany) and comprised scientists from Politecnico di Milano (Italy), Karlsruhe Institute of Technology (KIT) and the European Synchrotron (ESRF) in Grenoble, France.

High-temperature was discovered nearly thirty years ago and is beginning to find more and more practical applications. These materials have fascinated scientists since their discovery. For even more practical applications, the origin of their amazing properties must be understood, and ways found to calculate the critical temperature. A key element of this understanding is the process that makes electrons combine into so-called "Cooper pairs" when the material is cooled below the critical temperature. In classical superconductors, these Cooper pairs are formed thanks to electron-phonon coupling, an interaction between electrons carrying the electrical current and collective vibrations of atoms in the material.

To understand the role this interaction plays in , Matthieu Le Tacon and his colleagues took up the challenge to study these atomic vibrations as the material was cooled down below its . "Studying electron-phonon coupling in these superconductors is always a delicate task, due to the complex structure of the materials," says Alexeï Bosak, an ESRF scientist and member of the team. He adds: "This is why we developed a two-level approach to literally find a needle in the hay stack".

The big surprise came once the electron-phonon coupling had been probed. "In terms of its amplitude, the coupling is actually by far the biggest ever observed in a superconductor, but it occurs in a very narrow region of phonon wavelengths and at a very low energy of vibration of the atoms", adds Mathieu Le Tacon. "This explains why nobody could see it before the two-level approach of X-ray scattering was developed".

Because the electron-phonon coupling is in such a narrow wavelength region, it cannot "help" two electrons to bind themselves together into a Cooper pair. The next step will be to make systematic observations in many other high-temperature superconductors. "Although we now know that electron-phonon coupling does not contribute to their superconductivity, the unexpected size of the effect—we call it giant electron-phonon-coupling—happens to be a valuable tool to study the interplay between superconductivity and other competing processes. This will hopefully provide further insight into the origin of , still one of the big mysteries of science", concludes Mathieu Le Tacon.

Explore further: Neutrons cast serious doubt on major 'suspect' in search for origin of high-temperature superconductivity

More information: M. Le Tacon et al., Giant phonon anomalies and central peak due to charge density wave formation in Yb2-Cu3-06.6, Nature Physics advanced online publication 24 November 2013, DOI: 10.1038/nphys2805

Related Stories

Superconductivity's third side unmasked

June 17, 2011

The debate over the mechanism that causes superconductivity in a class of materials called the pnictides has been settled by a research team from Japan and China. Superconductivity was discovered in the pnictides only recently, ...

Optimizing electronic correlations for superconductivity

November 18, 2013

(Phys.org) —The decadeslong effort to create practical superconductors moved a step forward with the discovery at Rice University that two distinctly different iron-based compounds share common mechanisms for moving electrons.

Constructive conflict in the superconductor

August 17, 2012

Whether a material conducts electricity without losses is not least a question of the right temperature. In future it may be possible to make a more reliable prediction for high-temperature superconductors. These materials ...

Recommended for you

Physicists show ion pairs perform enhanced 'spooky action'

March 28, 2017

Adding to strong recent demonstrations that particles of light perform what Einstein called "spooky action at a distance," in which two separated objects can have a connection that exceeds everyday experience, physicists ...

New method heats up ultrasonic approach to treating tumors

March 28, 2017

High-intensity focused ultrasound (HIFU) is a breakthrough therapeutic technique used to treat tumors. The principle of this noninvasive, targeted treatment is much like that of focusing sunlight through a lens, using an ...

Physics can predict wealth inequality

March 28, 2017

The 2016 election year highlighted the growing problem of wealth inequality and finding ways to help the people who are falling behind. This human urge of compassion isn't new, but the big question that remains to be addressed ...


Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Nov 25, 2013
Great observational work. "The coupling is by far the biggest ever observed." Art Winfree's law of coupled oscillators at work. See my many prior Physorg posts on Winfree, mostly in ref to superconductivity.
Nov 25, 2013
This comment has been removed by a moderator.
Nov 25, 2013
This comment has been removed by a moderator.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.