Scientists provide 'new spin' on emerging quantum technologies

April 23, 2013

An international team of scientists has shed new light on a fundamental area of physics which could have important implications for future electronic devices and the transfer of information at the quantum level.

The electrical currents currently used to power electronic devices are generated by a flow of charges. However, emerging such as -electronics, make use of both charge and another intrinsic property of – their spin – to transfer and process signals and information.

The experimental and theoretical work, carried out by researchers from York's Department of Physics, the Institute of Nanoscience in Paris and the University of Missouri-Columbia, could have important implications for and technologies.

The team looked at semiconductors' structures – the base of current and of many spintronic device proposals - and the problems created by internal fields known as spin-orbit fields. In general, these tend to act differently on each electronic spin, causing a phenomenon referred to as 'spin-decoherence'. This means that the electronic spins will behave in a way which cannot be completely controlled or predicted, which has important implications for device functionalities.

To address this problem, the scientists looked at semiconductor structures called '' where the spins can be excited in a collective, coherent way by using lasers and light scattering.

They demonstrated that these collective spin excitations possess a macroscopic spin of quantum nature. In other words, the electrons and their spins act as a single entity making them less susceptible to spin orbit fields, so decoherence is highly suppressed.

The theoretical work was led by Dr Irene D'Amico from York's Department of Physics, and Carsten Ullrich, an Associate Professor from Missouri-Columbia's Department of Physics. The project began with their prediction about the effect of spin Coulomb drag on collective spin excitations, and developed into a much larger international project spanning over three years, which was funded in the UK by a Royal Society grant, with additional funding from the Engineering and Physical Sciences Research Council (EPSRC).

Dr D'Amico said: "This work has developed into a strong international collaboration which has greatly improved our understanding at fundamental level of the role of many-body interactions on the behaviour of electron spins.

"By combining experimental and theoretical work, we were able to demonstrate that through many-body interactions, a macroscopic collection of spins can behave as a single entity with a single macroscopic quantum spin, making this much less susceptible to decoherence. In the future, it may be possible to use these excitations as signals to transport or elaborate information at the ."

After reporting their results in the journal Physical Review Letters last year, the team of scientists confirmed and extended the results by considering different materials and type of excitation. The second set of experiments, were recently reported in Physical Review B (Rapid Communication) and highlighted by the Journal as an 'Editor's Suggestion'.

Dr Florent Perez, who led the experimental work with Florent Baboux, at the CNRS/Université Paris VI, says the results strongly suggest that the of the macroscopic spin is universal to collective spin excitations in conductive systems.

He said: "The collaboration with Irene D'Amico and Carsten Ullrich has been particularly powerful to disentangle the puzzle of our data. In our first joint work we constructed an interpretation of the phenomenon which was confirmed in a second investigation carried out on a different system. This paved the way for a universality of the effect."

Explore further: Physicists make strides in understanding quantum entanglement

More information: "Giant Collective Spin-Orbit Field in a Quantum Well: Fine Structure of Spin Plasmons"; authors F. Baboux, F. Perez, C. A. Ullrich, I. D'Amico, J. Gómez, and M. Bernard, appears in Physical Review Letters at prl.aps.org/abstract/PRL/v109/i16/e166401

"Coulomb-driven organization and enhancement of spin-orbit fields in collective spin excitations"; authors F. Baboux, F. Perez, C. A. Ullrich, I. D'Amico, G. Karczewski, and T. Wojtowicz, appears in Physical Review B (Rapid Communication) as an Editor's Suggestion, at prb.aps.org/abstract/PRB/v87/i12/e121303

Related Stories

Creating a pure spin current in graphene

February 7, 2011

(PhysOrg.com) -- Graphene is a material that has the potential for a number of future applications. Scientists are interested in using graphene for quantum computing and also as a replacement for electronics. However, in ...

Physicists cross hurdle in quantum manipulation of matter

September 17, 2010

Finding ways to control matter at the level of single atoms and electrons fascinates many scientists and engineers because the ability to manipulate single charges and single magnetic moments (spins) may help researchers ...

Recommended for you

Theory lends transparency to how glass breaks

January 16, 2017

Over time, when a metallic glass is put under stress, its atoms will shift, slide and ultimately form bands that leave the material more prone to breaking. Rice University scientists have developed new computational methods ...

A novel way to put flame retardant in a lithium ion battery

January 16, 2017

(Phys.org)—A team of researchers at Stanford University has found a novel way to introduce flame retardant into a lithium ion battery to prevent fires from occurring. In their paper published in the journal Science Advances, ...

Self-assembling particles brighten future of LED lighting

January 16, 2017

Just when lighting aficionados were in a dark place, LEDs came to the rescue. Over the past decade, LED technologies—short for light-emitting diode—have swept the lighting industry by offering features such as durability, ...

Phase transition discovery opens the door to new electronics

January 16, 2017

A group of European scientists led by researchers at TU Delft has discovered how phase transitions propagate throughout materials called nickelates. The discovery improves our understanding of these novel materials, which ...

Electron diffraction locates hydrogen atoms

January 13, 2017

Diffraction-based analytical methods are widely used in laboratories, but they struggle to study samples that are smaller than a micrometer in size. Researchers from the Laboratoire de cristallographie et sciences des matériaux ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

vacuum-mechanics
1 / 5 (3) Apr 23, 2013
The electrical currents currently used to power electronic devices are generated by a flow of charges. However, emerging quantum technologies such as spin-electronics, make use of both charge and another intrinsic property of electrons – their spin – to transfer and process signals and information.

While the basic concept of quantum mechanics is still mystery, but quantum technology is ongoing! Maybe this mechanism of quantum mechanics could help the research.
http://www.vacuum...19〈=en
rsklyar
1 / 5 (1) Apr 29, 2013
How British swindlers are stealing in their cheating journals Nature Materials and "Measurement Science and Technology" at https://connect.i...sr/blogs (Impertinent cheating ... & A robbery ...)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.