Shocking Asian carp out of Midwest rivers not a viable option

December 21, 2012 by Brian Wallheimer, Purdue University
Reuben Goforth found that the voltage necessary to kill Asian carp embryos and control the invasive species with electricity would be too high to be safe in rivers. Credit: Purdue Agricultural Communication photo/Tom Campbell

(—One of the more promising ideas for controlling or eliminating troublesome Asian carp populations in the Midwest's rivers is impractical and unsafe, according to a Purdue University researcher.

Scientists had hoped to modify or expand low-voltage electrical barriers like those used around Chicago waterways to direct fish from particular areas. Reuben Goforth, an assistant professor of aquatic community ecology in the Department of Forestry and Natural Resources, said the level of electricity needed to kill Asian carp eggs in the rivers where the has spread would be far too high.

"We were really hoping this would be a viable way to control these Asian carp," said Goforth, whose findings were published in the early online version of Transactions of the American Fisheries Society. "We really need to look at other methods."

The several species known as Asian carp - silver carp, black carp and bighead carp - are not native to U.S. waterways but have been found in rivers throughout the Midwest. These fish are competing with for food and altering ecosystems. They are also dangerous to boaters and other river users since Asian carp can weight up to 60 pounds and are known to jump out of the water during even minor disturbances.

"They're softer, but imagine going 35 mph in a boat and having something with the mass of a bowling ball hitting you in the face," Goforth said. "There are cases of broken cheeks, broken noses, people being knocked out."

Goforth tested electrical fields on three model species - zebrafish, and fathead minnows - which are in the same family as Asian and have embryos that are similar in size. He found that it took at least 16 volts per centimeter of electricity to kill the .

That's in contrast with 1 volt per centimeter used in electrical barriers around Chicago, which Goforth said have had at least one case in which a boat too close to shore caused a substantial electrical arc.

"Using 16 volts is just too much," he said. "It would be dangerous for people and other aquatic life to put that much electricity in the water. It's a significant hazard.

"Even if we were able to control the population with 8 volts per centimeter, that's a lot of electricity."

Goforth said he would look at other methods to control , including using weak or hydroacoustics to deter the fish from optimal spawning grounds.

Explore further: Congressman praises silver carp decision

More information: Evaluating the Effects of Electricity on Fish Embryos as a Potential Strategy for Controlling Invasive Cyprinids, Sam Nutile, Jon J. Amberg, and Reuben R. Goforth, Transactions of the American Fisheries Society.

Fish embryo responses to electricity have been evaluated to investigate impacts of electrofishing on survival of fish embryos. However, use of electricity as a lethal means of control for early life history stages of unwanted invasive fish species has not been investigated. We exposed Fathead Minnow Pimephales promelas and Zebrafish Danio rerio embryos at multiple developmental stages to voltage gradients between 2 and 24 V/cm with pulsed direct current (PDC) and virtual direct current (VDC) for 20 and 60 s. Goldfish Carassius auratus embryos were similarly exposed to the same voltage gradients, although these trials were limited to VDC for 60 s. Voltage gradients ≥20 V/cm resulted in significantly lower survival for Fathead Minnow and Zebrafish embryos, and Goldfish embryos exhibited significantly reduced survival at voltage gradients ≥16 V/cm. Zebrafish embryos also exhibited significantly lower survival with longer exposure duration and when exposed to VDC versus PDC, although Fathead Minnow embryo survival did not differ across exposure durations or current types. Based on these results, the use of electrical barriers to control bigheaded carps at early life history stages is likely impractical due to the large voltage gradients and high power densities necessary to transfer lethal power to embryos in open systems with ambient conductivities >300  ̄S/cm. The larger size of bigheaded carp eggs relative to those of our proxy cyprinids may make them more susceptible to lower voltage gradients. However, exploratory tests using a small number of wild-caught bigheaded carp eggs suggested that voltage gradients and associated power densities needed to transfer lethal power to embryos under in situ ambient conductivities were similar to those required to reduce survival in the proxy fish, possibly due to the small size of the bigheaded carp embryos relative to the large void space in water-hardened eggs.

Related Stories

Wildlife officials search for carp in Chicago area

February 17, 2010

(AP) -- Armed with sprawling fishing nets and boats equipped with electric prods, state and federal fisheries biologists began a "search-and-destroy" mission in Chicago-area waterways Wednesday aimed at rooting out the dreaded ...

Illinois to poison canal in hopes of killing invasive carp

December 2, 2009

The largest fish kill in Illinois history -- expected to net 100 tons of fish including, hopefully, some Asian carp -- is to start Wednesday south of Chicago in an attempt to make sure none of the feared carp make it past ...

Efforts to close canal to Great Lakes

August 8, 2011

Efforts are underway to try and get the river locks on the Chicago Sanitary and Ship Canal closed in order to stop the spread of two invasive species of fish known as the Asian carp and the Snakehead.

Recommended for you

Houseplants could one day monitor home health

July 20, 2018

In a perspective published in the July 20 issue of Science, Neal Stewart and his University of Tennessee coauthors explore the future of houseplants as aesthetically pleasing and functional sirens of home health.

LC10 – the neuron that tracks fruit flies

July 20, 2018

Many animals rely on vision to detect, locate, and track moving objects. Male Drosophila fruit flies primarily use visual cues to stay close to a female and to direct their courtship song towards her. Scientists from the ...

Putting bacteria to work

July 20, 2018

The idea of bacteria as diverse, complex perceptive entities that can hunt prey in packs, remember past experiences and interact with the moods and perceptions of their human hosts sounds like the plot of some low-budget ...


Adjust slider to filter visible comments by rank

Display comments: newest first

3 / 5 (2) Dec 23, 2012
Gee how come they just don't fish them to local extinction. They are considered a good eating fish in China, and they'd buy them.
1 / 5 (2) Dec 23, 2012
These fish literally jump into your boat.
Eat them and harvest them for Asians to eat and make money.
I don't understand the problem.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.