Nano-hillocks: Of mountains and craters

October 1, 2012
Nano-hillocks: Of mountains and craters
Following bombardment with highly charged ions, nano-hillocks have formed in an area of localized melting. This is an atomic force microscope image. Credit: HZDR

In the field of nanotechnology, electrically-charged particles are frequently used as tools for surface modification. Researchers at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and the TU Vienna were at last able to reconcile important issues concerning the effects of highly charged ions on surfaces.

have been used for some time now for modification as ions are capable of carrying such high energies that a single particle alone can induce drastic changes to the surface under bombardment. Following careful examination, an international team of researchers was at last able to shed light on the reasons why sometimes craters and other times hillocks are forming as a result of this process. Their findings have recently been published in the scientific journal, .

Charge instead of speed

"If the goal is to deposit a maximum amount of energy on a tiny spot on the surface, it is of comparatively little use to simply bombard the surface with fast atoms," explains Prof. Friedrich Aumayr of the TU Vienna's Institute of . "Fast particles penetrate deep into the material thereby depositing their energy over a wide range." If, however, you first strip a large number of electrons from individual atoms and then allow these highly charged ions to collide with the material surface, the effects you get are quite dramatic as the energy that was previously required to ionize the atoms is now being released within a very small area of a few in diameter, and within an ultrashort time.

This can lead to melting of a very small volume of the material, loss of its orderly , and, finally, its expansion. The large number of electronic excitations that result from the ion's interactions with the surface has a strong impact on the material and ultimately leads to the atoms being bumped out of position. The end-result is nano-hillock formation – the appearance of tiny on the material's surface. If the energy required to initiate melting of the material is insufficient, small holes or defects will form on or below the surface instead.

Elaborate experiments at the HZDR facility for highly charged ions were just as important to obtaining a detailed picture of the processes that take place at the material's surface as were computer simulations and extensive theoretical work. "At our new HZDR facility, we have the capabilities for deliberately forming nano-hillocks and nano-craters on surfaces. In close collaboration with the groups of our colleagues Friedrich Aumayr and Joachim Burgdörfer at the TU Vienna we succeeded to grasp the underlying physical mechanisms in more detail", explains Dr. Stefan Facsko. Egyptian physicist Dr. Ayman El-Said, who spent two years as a Humboldt Foundation fellow conducting research at HZDR, made substantial contributions to the current body of research in this field.

Assumptions confirmed

The scientists are calling their results the missing important piece of the puzzle to help them understand the interaction of highly charged ions with surfaces. By subjecting the sample to an acid treatment following ion , they are able to document the extent to which a surface is modified at given energies. The formation of nano-hillocks depends to a large extent on the ion beams' charge state and to a lesser extent on their velocity. The formation of craters, on the other hand, is dependent upon both the charge state and the kinetic energy of the . The Vienna and Dresden researchers had long suspected this and were now at last able to produce the necessary evidence obtained from their experiments conducted at the HZDR.

Explore further: Laser heating -- new light cast on electrons heated to several billion degrees

More information: A.S. El-Said, R.A. Wilhelm, R. Heller, S. Facsko, C. Lemell, G. Wachter, J. Burgdörfer, R. Ritter, F. Aumayr: "Phase diagram for nanostructuring CaF2 surfaces by slow highly charged ions", in Physical Review Letters 109 (2012), 117602, , DOI:10.1103/PhysRevLett.109.117602

Related Stories

How long do electrons live in graphene?

December 12, 2011

Together with international colleagues, scientists from the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) have added another important component towards understanding the material graphene; a material that is currently receiving ...

Physicists confine electrons inside nano-pyramids

September 28, 2012

(—Quantum dots are nanostructures of semiconducting materials that behave a lot like single atoms and are very easy to produce. Given their special properties, researchers see huge potential for quantum dots in ...

Ferromagnetism plus superconductivity

April 18, 2011

It seems impossible: Scientists from the Helmholtz-Zentrum Dresden-Rossendorf and the TU Dresden (Germany) were able to verify with an intermetallic compound of bismuth and nickel that certain materials actually exhibit the ...

Recommended for you

Scientists discover superconductor with bounce

October 23, 2017

The U.S. Department of Energy's Ames Laboratory has discovered extreme "bounce," or super-elastic shape-memory properties in a material that could be applied for use as an actuator in the harshest of conditions, such as outer ...

Scientists update four key fundamental constants

October 23, 2017

Paving the way for transforming the world's measurement system, an international task force has determined updated values for four fundamental constants of nature. The updated values comprise the last scientific piece of ...

Experiment provides deeper look into the nature of neutrinos

October 23, 2017

The first glimpse of data from the full array of a deeply chilled particle detector operating beneath a mountain in Italy sets the most precise limits yet on where scientists might find a theorized process to help explain ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.