Proteins feel long-range attractive forces

August 30, 2012 by Anne Ju
Living cell membranes are poised to separate into two components (blue and white), leading to fractal-like patterns of each. Image: Ben Machta

(Phys.org)—Proteins embedded in the lipid membranes of cells feel long-range attractive forces in specific patterns that mediate the proteins' behavior—for example, assisting in the clumping sequences in response to allergens, such as pollen, that eventually lead to the inevitable sneeze.

Cornell physicists have identified the physical mechanisms behind these protein attractions, which are set off by changes in cellular membranes. Their research, led by professor of physics Jim Sethna, has been accepted for publication in Physical Review Letters.

The researchers were inspired by a recent discovery that cell membranes can separate into two liquid phases, much like oil and water, in fractal-like patterns. The physical fluctuations that result lead to remarkably long-range attractions between certain proteins, depending on the fractal patterns.

These changes take place at the so-called critical point of the liquid- separation of the cell membrane, which is the subtle temperature and composition point at which the two phases separate. The proteins sitting in this membrane, at this critical point, are able to feel forces 20 nanometers apart, the physicists predict—a notable distance at those scales.

"We were intrigued that it seems like biology does want to tune itself closely to this critical point," said graduate student and co-author Ben Machta.

The experiments built on previous work by former postdoctoral associate and co-author Sarah Veatch, who had studied cellular membranes of and demonstrated their liquid-liquid phase separations.

The work was supported by the National Science Foundation and the National Institutes of Health.

Explore further: Scientists develop new tool for the study of spatial patterns in living cells

Related Stories

Cell membranes behave like cornstarch and water

November 3, 2010

(PhysOrg.com) -- Surprising discovery by physicists at the University of Oregon overturns a long-held belief, and raises fresh new scientific questions about the biology that regulates lipid and protein mobility.

Driving membrane curvature

June 14, 2012

(Phys.org) -- In biological systems, membranes are as important as water. They form the barrier between the inner world, within our cells, where we perform the chemical reactions of life, and the outside environment.

'Nano-Keys' Bind Cell Receptors and Trigger Allergic Reactions

February 16, 2006

The tumblers of life continue to click as Cornell University researchers have fabricated a set of "nano-keys" on the molecular scale to interact with receptors on cell membranes and trigger larger-scale responses within cells ...

Recommended for you

Polymer additive could revolutionize plastics recycling

February 24, 2017

When Geoffrey Coates, the Tisch University Professor of Chemistry and Chemical Biology, gives a talk about plastics and recycling, he usually opens with this question: What percentage of the 78 million tons of plastic used ...

Electrons use DNA like a wire for signaling DNA replication

February 24, 2017

In the early 1990s, Jacqueline Barton, the John G. Kirkwood and Arthur A. Noyes Professor of Chemistry at Caltech, discovered an unexpected property of DNA—that it can act like an electrical wire to transfer electrons quickly ...

Nano-sized hydrogen storage system increases efficiency

February 24, 2017

Lawrence Livermore scientists have collaborated with an interdisciplinary team of researchers including colleagues from Sandia National Laboratories to develop an efficient hydrogen storage system that could be a boon for ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.