Toughened silicon sponges may make tenacious batteries

July 16, 2012, Rice University
A Swiss cheese-like silicon sponge lifts off from a wafer in a process developed by researchers at Rice University and Lockheed Martin who hope to replace graphite anodes in lithium-ion batteries with a material that has a larger capacity for lithium. (Credit: Madhuri Thakur/Rice University)

( -- Researchers at Rice University and Lockheed Martin reported this month that they've found a way to make multiple high-performance anodes from a single silicon wafer. The process uses simple silicon to replace graphite as an element in rechargeable lithium-ion batteries, laying the groundwork for longer-lasting, more powerful batteries for such applications as commercial electronics and electric vehicles.

The work led by Sibani Lisa Biswal, an assistant professor of chemical and biomolecular engineering at Rice, and lead author Madhuri Thakur, a Rice research scientist, details the process by which Swiss cheese-like silicon "" that store more than four times their weight in lithium can be electrochemically lifted off of wafers.

The research was reported online this month in the journal .

Silicon – one of the most common elements on Earth – is a candidate to replace graphite as the anode in batteries. In a previous advance by Biswal and her team, porous silicon was found to soak up 10 times more lithium than .

A sponge formed from a solid wafer of silicon helps the material realize its potential to hold 10 times the amount of lithium ions than current materials used in rechargeable batteries. The material was developed by Rice University and Lockheed Martin. (Credit: Madhuri Thakur/Rice University)

Because silicon expands as it absorbs lithium ions, the sponge-like configuration gives it room to grow internally without degrading the battery's performance, the researchers reported. The promise that silicon sponges, with pores a micron wide and 12 microns deep, held for batteries was revealed in 2010 at Rice's Buckyball Discovery Conference by Thakur, Biswal, their Rice colleague Michael Wong, a professor of chemical and biomolecular engineering and of chemistry, and Steven Sinsabaugh, a Fellow. But even then Thakur saw room for improvement as the solid silicon substrate served no purpose in absorbing lithium.

In the new work, they discovered the electrochemical etching process used to create the pores can also separate the sponge from the substrate, which is then reused to make more sponges. The team noted that at least four films can be drawn from a standard 250-micron-thick wafer. Removing the sponge from the silicon substrate also eliminates a limiting factor to the amount of lithium that can be stored.

Micronwide pores in silicon give the material room to expand when soaking in lithium ions in a rechargeable battery, according to researchers at Rice University and Lockheed Martin. The scientists are developing the material to replace graphite as the anode in common batteries for commercial electronics and perhaps even electric vehicles. (Credit: Madhuri Thakur/Rice University)

The team also found a way to make the pores 50 microns deep. Once lifted from the wafer, the sponges, now open at the top and bottom, were enhanced for conductivity by soaking them in a conductive polymer binder, pyrolyzed polyacrylonitrile (PAN).

The product was a tough film that could be attached to a current collector (in this case, a thin layer of titanium on copper) and placed in a battery configuration. The result was a working -ion battery with a discharge capacity of 1,260 milliamp-hours per gram, a capability that should lead to batteries that last longer between charges.

The researchers compared batteries using their film before and after the PAN-and-bake treatment. Before, the batteries started with a discharge capacity of 757 milliamp-hours per gram, dropped rapidly after the second charge-discharge cycle and failed completely by cycle 15. The treated film increased in discharge capacity over the first four cycles – typical for porous silicon, the researchers said – and the capacity remained consistent through 20 cycles.

The researchers are investigating techniques that promise to vastly increase the number of charge-discharge cycles, a critical feature for commercial applications in which rechargeable batteries are expected to last for years.

Explore further: Silicon strategy shows promise for batteries

More information:

Related Stories

New nanostructure for batteries keeps going and going

May 11, 2012

( -- For more than a decade, scientists have tried to improve lithium-based batteries by replacing the graphite in one terminal with silicon, which can store 10 times more charge. But after just a few charge/discharge ...

Recommended for you

Designing the next generation of hair dyes

January 17, 2018

North Carolina State University researchers have created the largest publicly available chemical database of hair dye substances as a resource for developing a new generation of hair color products that are safer for consumers, ...

Pigments in oil paintings linked to artwork degradation

January 17, 2018

Experts have long known that as oil paintings age, soaps can form within the paint, degrading the appearance of the artworks. The process significantly complicates the preservation of oil paintings—and cultural manifestations, ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jul 17, 2012
If the entire battery had a capacity of 1,260 mAh per gram, then the energy density is on the order of 4 kWh/kg which is on par with what you get out of gasoline in an engine.

How much of necessary support structures were omitted will determine what the practical capacity will be. Approximately 30% of the weight of the battery system in an electric car, besides the battery cells themselves, is used for support, mechanical protection and cooling, which would limit the energy density. Still, getting in the kWh range means that every kilo carries you about 4-5 miles, which is very very good.

And also potentially very bad, because batteries have the inherent capability of self-discharge, and with lots of energy in a small package it can turn into a firebomb that burns like gunpowder if it gets going.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.