Self-healing dynamic membrane

June 28, 2012
Schematic representation of a membrane failure (red impact) immediately repaired by water flowing through it (blue). © Damien Quémener

The market for membranes, porous materials used mainly to filter liquids, is booming. However, their design leaves room for improvement. Taking their inspiration from cellular membranes, French researchers from the Institut Européen des Membranes in collaboration with the Institut de Chimie Radicalaire have developed the first dynamic membrane for water filtration which, depending on the water pressure, can adjust the size of its pores in an autonomous manner. In addition, it is capable of repairing itself if it breaks, thereby prolonging its lifetime and ensuring greater safety of the filtered product. This research is published in the journal Angewandte Chemie.

Whether made of ceramics or polymers, membranes are used in a wide range of applications, particularly in the pharmaceutical and food processing industries. Also involved in water desalination and the production of drinking water, the market is growing by 10% each year. The membranes used until now are fixed structures, i.e. the size of their cannot be adjusted. Furthermore, they are liable to tear which, if not immediately detected, can be a health hazard.

Taking from cellular membranes, the team of researchers has developed a novel type of filter: a dynamic membrane whose pore size can be made to vary as a function of the of water flowing through it. This membrane is made of a combination of three polymers with different solubilities that form micelles, nanoparticles in constant interaction with each other. Up to a certain pressure, when the force of increases, these micelles have a tendency to flatten out and thus reduce the size of the pores within the membrane. For instance, at a low pressure of approximately 0.1 bars, the size of the pores is around 5 nanometers (1), which allows macromolecules and viruses to be filtered. By moderately increasing the pressure, pores of the order of 1 nanometer are obtained, which blocks the passage of salts, colorants and surfactants. However, if the pressure is raised to 5 bars, the morphology of the membrane undergoes a drastic change and the pores reach a diameter of more than 100 nanometers, which instead makes it possible to filter bacteria and suspended particulate matter. This unique property will allow users to employ a single type of membrane for all their filtration requirements.

Scanning electron microscopy image of the membrane with an atomic force microscopy enhancement of the surface. © Institut Européen des Membranes

But that is not all: these 1.3 micrometer-thick dynamic filters are capable of self-healing. If the membrane tears, the physical equilibrium that holds the micelles together is broken. The micelles then seek to restore this equilibrium and reorganize themselves so as to fill the tear. A perforation 85 times larger than the thickness of the membrane can thus be repaired without human intervention and without stopping the filtration operation. This self-healing ability means it is possible both to extend the lifetime of membranes and to enhance health safety guarantees. 

Explore further: Nanotechnological innovations can improve water purification

More information: Dynamic Interactive Membranes with Pressure-Driven Tunable Porosity and Self-Healing Ability. Prashant Tyagi, André Deratani, Denis Bouyer, Didier Cot, Valérie Gence, Mihail Barboiu, Trang N. T. Phan, Denis Bertin, Didier Gigmes, Damien Quemener. Angewandte Chemie. Published on-line on the 13 June 2012. DOI: 10.1002/anie.201201686

Related Stories

Nanopores make sterile filtration more reliable

July 1, 2010

Irregular pores, low flow rates: The plastic membrane filters used in sterile filtration do not always ensure that conditions are really sterile. Filter membranes of aluminum oxide are more reliable - the size of the nanopores ...

Thinnest nanofiltration membrane to date

July 7, 2011

A recent collaboration between researchers at the University of Chicago and the University of Illinois at Chicago with the Center for Nanoscale Material's Electronic & Magnetic Materials & Devices Group at the Argonne National ...

Better way to desalinate water discovered

February 9, 2006

Chemical engineer Kamalesh Sirkar, PhD, a distinguished professor at New Jersey Institute of Technology and an expert in membrane separation technology, is leading a team of researchers to develop a breakthrough method to ...

Recommended for you

Scientific advances can make it easier to recycle plastics

November 17, 2017

Most of the 150 million tons of plastics produced around the world every year end up in landfills, the oceans and elsewhere. Less than 9 percent of plastics are recycled in the United States, rising to about 30 percent in ...

The spliceosome—now available in high definition

November 17, 2017

UCLA researchers have solved the high-resolution structure of a massive cellular machine, the spliceosome, filling the last major gap in our understanding of the RNA splicing process that was previously unclear.

Ionic 'solar cell' could provide on-demand water desalination

November 15, 2017

Modern solar cells, which use energy from light to generate electrons and holes that are then transported out of semiconducting materials and into external circuits for human use, have existed in one form or another for over ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.