Researchers prove new circuit pattern-design process, see promise for 14 nanometer design with directed self-assembly

May 24, 2012, Semiconductor Research Corporation

( -- Researchers sponsored by Semiconductor Research Corporation (SRC) announced that they have successfully created contact hole patterns for a wide variety of practical logic and memory devices using a next-generation directed self-assembly (DSA) process. Applying a relatively simple combination of chemical and thermal processes to create their DSA method for making circuits at 22 nanometers (nm), the research team at Stanford University projects that the nanofabrication technique will enable pattern etching for next-generation chips down to 14nm.

In contrast to the current state-of-art methods that rely on increasingly less-accurate steps to shrink transistor and circuit sizes, the achievement at Stanford provides both a more affordable and more environmentally friendly path to fabricating smaller . The advancement can be utilized for enhancements not only to the , but possibly for other as well.

“This is the first time that the critical contact holes have been placed with DSA for standard cell libraries of VLSI chips. The result is a composed pattern of real , not just test structures,” said H.-S. Philip Wong, lead researcher at Stanford for the SRC-guided research. “This irregular solution for DSA also allows you to heal imperfections in the pattern and maintain higher resolution and finer features on the wafer than by any other viable alternative.”

To build reliable circuits using the new DSA process, the researchers covered a wafer surface with a block copolymer film. Common lithographic techniques were used to carve impressions into the wafer surface, producing a pattern of irregularly placed indentations that serve as templates to guide movement of molecules of the block copolymer into self-assembled configurations.

By varying the shape and size of the guiding templates, manufacturers can space holes more closely than current lithographic methods permit. The resulting closely packed patterns enable the semiconductor industry to build smaller, faster and more energy efficient chips than provided by today’s larger devices.

Environmental improvements over previous generations of manufacturing also are achieved. In order to provide the safest solvents for use in the coating and etching process, the researchers selected polyethylene glycol monomethyl ether acetate (PGMEA) as a healthier and more effective alternative compared to other options.

“This research is a significant contribution to the ability to move ahead on the technological and environmental issues that are important to the industry and the customers it serves,” said Dr. Steve Hillenius, executive vice president for SRC. “In addition, the ability to avoid the cost of lithography tools at $150 million per tool – and it requires a set of multiple such lithographic tools to make the most advanced chips – provides an even more compelling option for patterning.”

A broad range of companies can benefit from the results of the research, including fabless design houses, photoresist companies, tool suppliers and chip manufacturers.

Important next steps remain for the research. Among those is engagement with electronic design automation experts for the purpose of developing software and tools that will enable circuit designers to specify where the holes are to be located on the wafer. This resource for chip designers will allow them to plan without the distraction of where to place the guiding templates, providing the industry with another advantage in addition to the delay of investment in next-generation lithography tools.

Explore further: Plasma etching pushes the limits of a shrinking world

More information: Flexible Control of Block Copolymer Directed Self-Assembly using Small, Topographical Templates: Potential Lithography Solution for Integrated Circuit Contact Hole Patterning, Advanced Materials, Article first published online: 2 MAY 2012. DOI: 10.1002/adma.201200265

Block copolymer directed self-assembly (DSA) using small guiding templates for contact hole patterning in integrated circuits is reported. Flexible and precise DSA control of 25 nm contact holes guided by 66 nm templates for industry-standard 22 nm static random access memory cells is experimentally demonstrated. For 22 nm random logic circuits a DSA-aware design methodology is developed and the contact holes are achieved with a critical dimension of 15 nm and overylay accuracy of 1 nm.

Related Stories

Plasma etching pushes the limits of a shrinking world

November 10, 2011

Plasma etching (using an ionized gas to carve tiny components on silicon wafers) has long enabled the perpetuation of Moore's Law -- the observation that the number of transistors that can be squeezed into an integrated circuit ...

Significant Achievements in Intel's EUV Lithography Program

August 2, 2004

Intel Corporation today revealed two significant milestones in the development of extreme-ultraviolet (EUV) lithography, a technology for making future microprocessors. The company installed the world's first commercial EUV ...

Recommended for you

World's biggest battery in Australia to trump Musk's

March 16, 2018

British billionaire businessman Sanjeev Gupta will built the world's biggest battery in South Australia, officials said Friday, overtaking US star entrepreneur Elon Musk's project in the same state last year.

1 in 3 Michigan workers tested opened fake 'phishing' email

March 16, 2018

Michigan auditors who conducted a fake "phishing" attack on 5,000 randomly selected state employees said Friday that nearly one-third opened the email, a quarter clicked on the link and almost one-fifth entered their user ...

Origami-inspired self-locking foldable robotic arm

March 15, 2018

A research team of Seoul National University led by Professor Kyu-Jin Cho has developed an origami-inspired robotic arm that is foldable, self-assembling and also highly-rigid. (The researchers include Suk-Jun Kim, Dae-Young ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet May 24, 2012
ok, i see little holes, but what about contactlines/rectangles etc?
1 / 5 (2) May 24, 2012
It looks like they were trying to indicate the wiring circuitry the holes could be used for.
not rated yet May 25, 2012
That's fantastic! I can't wait to see the changes in technology the next 5-10 years will bring!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.