Superconducting strip could become an ultra-low-voltage sensor

April 30, 2012, Springer

Researchers studying a superconducting strip observed an intermittent motion of magnetic flux which carries vortices inside the regularly spaced weak conducting regions carved into the superconducting material. These vortices resulted in alternating static phases with zero voltage and dynamic phases, which are characterised by non-zero voltage peaks in the superconductor. This study, which is about to be published in EPJ B¹, was carried out by scientists from the Condensed Matter Theory Group of the University of Antwerp, Belgium, working in collaboration with Brazilian colleagues.

Superconductors, when subjected to sufficiently strong magnetic fields, feature vortices that carry quantized amounts of , although the natural tendency of is to expel such flux. The authors relied on the Ginzburg-Landau theory to study the dynamic of the nanometric- to millimetric-scale-width superconducting strip, which was subjected to a applied at a right angle and a current applied alongside its length.

Typically, weakly acting superconducting regions are natural impediments for the passage of electrical current. However, the authors found that they also work as efficient pathways for vortices to enter and exit the superconducting strip. The increasing magnetic field also increases the density of mutually repelling vortices, which stimulates vortex motion across the strip in the presence of an external current. At the same time, the barrier for vortex entry and exit on the strip boundaries is also dependent on the magnetic field. This interplay of magnetic-field-dependent barriers and vortex-vortex interaction results in an on/off vortex motion in increasing magnetic fields.

Due to the simple geometry of the strip, these results can be confirmed experimentally in magnetoresistance measurements. These findings could be applicable in gate devices used to control various modes of on/off states in electrical systems which operate in specific windows of temperature, applied magnetic field, current and voltage.

Explore further: Physicists unveil a theory for a new kind of superconductivity

More information: European Physical Journal B (EPJ B), DOI: 10.1140/epjb/e2012-30013-7

Related Stories

Stripes offer clues to superconductivity

May 17, 2010

New images of iron-based superconductors are providing telltale clues to the origin of superconductivity in a class of ceramic materials known as pnictides. The images reveal that electrons responsible for the superconducting ...

Tiny superconductors withstand stronger magnetic fields

February 4, 2005

Ultrathin superconducting wires can withstand stronger magnetic fields than larger wires made from the same material, researchers now report. This finding may be useful for technologies that employ superconducting magnets, ...

Recommended for you

Walking crystals may lead to new field of crystal robotics

February 23, 2018

Researchers have demonstrated that tiny micrometer-sized crystals—just barely visible to the human eye—can "walk" inchworm-style across the slide of a microscope. Other crystals are capable of different modes of locomotion ...

Researchers turn light upside down

February 23, 2018

Researchers from CIC nanoGUNE (San Sebastian, Spain) and collaborators have reported in Science the development of a so-called hyperbolic metasurface on which light propagates with completely reshaped wafefronts. This scientific ...

Recurrences in an isolated quantum many-body system

February 23, 2018

It is one of the most astonishing results of physics—when a complex system is left alone, it will return to its initial state with almost perfect precision. Gas particles, for example, chaotically swirling around in a container, ...

Seeing nanoscale details in mammalian cells

February 23, 2018

In 2014, W. E. Moerner, the Harry S. Mosher Professor of Chemistry at Stanford University, won the Nobel Prize in chemistry for co-developing a way of imaging shapes inside cells at very high resolution, called super-resolution ...

Hauling antiprotons around in a van

February 22, 2018

A team of researchers working on the antiProton Unstable Matter Annihilation (PUMA) project near CERN's particle laboratory, according to a report in Nature, plans to capture a billion antiprotons, put them in a shipping ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Macksb
1 / 5 (1) Apr 30, 2012
Similar to the vortices that appear in superfluid helium when the superfluid is stressed. The vortices are the sink into which the "super" material (superconductor or superfluid)sloughs off the stress.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.