Chemical engineers find high-yield method of making xylene from biomass

April 30, 2012

A team of chemical engineers led by Paul J. Dauenhauer of the University of Massachusetts Amherst has discovered a new, high-yield method of producing the key ingredient used to make plastic bottles from biomass. The process is inexpensive and currently creates the chemical p-xylene with an efficient yield of 75-percent, using most of the biomass feedstock, Dauenhauer says. The research is published in the journal ACS Catalysis.

Dauenhauer, an assistant professor of chemical engineering at UMass Amherst, says the new discovery shows that there is an efficient, renewable way to produce a chemical that has immediate and recognizable use for consumers. He says the currently produces p-xylene from petroleum and that the new renewable process creates exactly the same chemical from biomass.

'You can mix our renewable chemical with the petroleum-based material and the consumer would not be able to tell the difference," Dauenhauer says.

Consumers will already know the plastics made from this new process by the triangular recycling label "#1" on . chemicals are used to produce a plastic called PET (or ), which is currently used in many products including soda bottles, , for clothing and even automotive parts.

The new process uses a zeolite catalyst capable of transforming glucose into p-xylene in a three-step reaction within a high-temperature biomass reactor. Dauenhauer says this is a major breakthrough since other methods of producing renewable p-xylene are either expensive (e.g., ) or are inefficient due to low yields.

A key to the success of this new process is the use of a catalyst that is specifically designed to promote the p-xylene reaction over other less desirable reactions. Dauenhauer says his research colleagues, professors Wei Fan of UMass Amherst and Raul Lobo of the University of Delaware, designed the catalyst. After a series of modifications, the team was able to help enhance the yield of the reaction. He also says additional modification of the process can further boost p-xylene yield and make the process more economically attractive.

"We discovered that the performance of the biomass reaction was strongly affected by the nanostructure of the catalyst, which we were able to optimize and achieve 75-percent yield," Fan says. Computations conducted by the team have been instrumental in understanding the reaction mechanism and the role of the catalyst as well as making alteration to the catalyst to improve the yield of the process.

Besides Dauenhauer and Fan, the research team is made up of UMass Amherst's C. Luke Williams and Chun-Chih Chang, doctoral students in chemical engineering, and their collaborators, professors Raul F. Lobo, Dionisios G. Vlachos and Stavros Caratzoulas, as well as doctoral student Nima Nikbin, and postdoctoral fellow Phuong Do from the University of Delaware.

This discovery is a part of a larger effort by the Catalysis Center for Energy Innovation (CCEI) to create breakthrough technologies for the production of biofuels and chemicals from lignocellulosic biomass. The center is funded by the U.S. Department of Energy as part of the Energy Frontiers Research Center (EFRC) program which combines more than 20 faculty members with complimentary research skills to collaborate on solving the world's most pressing energy challenges.

The discovery for the production of plastics adds another dimension to the portfolio of accomplishments of CCEI. In 2010, a CCEI research team led by Mark Davis of Caltech discovered a new catalyst, called Tin-Beta, which can convert glucose into fructose. This is the first step in the production of a large number of targeted products including biofuels and biochemicals, including p-xylene, from the building block of cellulose, the major constituent of trees and switchgrass.

In addition, a team led by Ray Gorte and John Vohs at the University of Pennsylvania has developed a novel fuel cells technology that converts solid biomass to electricity and another led by George Huber and Wei Fan of UMass Amherst has improved the yield to aromatics that can be used as drop-in fuels to gasoline.

Explore further: Chemical engineers boost petrochemical output from biomass by 40 percent

Related Stories

'Mini-cellulose' molecule unlocks biofuel chemistry

February 16, 2012

A team of chemical engineers at the University of Massachusetts Amherst has discovered a small molecule that behaves the same as cellulose when it is converted to biofuel. Studying this 'mini-cellulose' molecule reveals for ...

Advancing scientific discovery

March 13, 2012

Every other Wednesday, University of Delaware graduate student Michael Salciccioli meets with faculty, students and postdoctoral researchers from UD along with colleagues from the University of Pennsylvania who are conducting ...

Recommended for you

Scientific advances can make it easier to recycle plastics

November 17, 2017

Most of the 150 million tons of plastics produced around the world every year end up in landfills, the oceans and elsewhere. Less than 9 percent of plastics are recycled in the United States, rising to about 30 percent in ...

The spliceosome—now available in high definition

November 17, 2017

UCLA researchers have solved the high-resolution structure of a massive cellular machine, the spliceosome, filling the last major gap in our understanding of the RNA splicing process that was previously unclear.

Ionic 'solar cell' could provide on-demand water desalination

November 15, 2017

Modern solar cells, which use energy from light to generate electrons and holes that are then transported out of semiconducting materials and into external circuits for human use, have existed in one form or another for over ...

Pulling iron out of waste printer toner

November 15, 2017

Someday, left-over toner in discarded printer cartridges could have a second life as bridge or building components instead of as trash, wasting away in landfills and potentially harming the environment. One group reports ...

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

gmfr
not rated yet Apr 30, 2012
I wonder how well this compares to standard production methods when you account for the energy to heat the bio-reactor. Very exciting though.
Terriva
5 / 5 (2) Apr 30, 2012
The zeolite catalyst works because of its tiny long pores. This catalytic activity is sensitive to contaminants, which are common in organic mixture from biomass. If I would invest into it, I would be interested about long-term stability of the catalyst at the first place.
Graeme
1 / 5 (1) May 01, 2012
And can this work with real biomass like straw? Or does it need pure glucose?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.