Advancing scientific discovery

March 13, 2012 By Karen B. Roberts, University of Delaware
Weiting Yu (left) and Michael Salciccioli conduct catalysis research.

Every other Wednesday, University of Delaware graduate student Michael Salciccioli meets with faculty, students and postdoctoral researchers from UD along with colleagues from the University of Pennsylvania who are conducting research in UD’s Catalysis Center for Energy Innovation (CCEI), an Energy Frontier Research Center funded by the Department of Energy. 

During these meetings, students and postdocs present their research, discuss challenges in their work and collaborate with their peers as well as the faculty. These bi-weekly meetings are designed to nurture ingenuity and multidisciplinary teamwork at a highly synergistic level.

Salciccioli is a fifth year doctoral student studying chemical engineering. His research focuses on computational modeling of metal catalysts useful to the production of biofuels and biochemicals.

Working with his adviser, CCEI director Dion Vlachos, Salciccioli has developed a novel framework that uses fundamental data, combined with mathematical computation, to rapidly screen hundreds of potential catalysts made from solid metal materials, and select top performers that warrant further study.

“Catalytic testing is expensive. By mathematically weeding out catalysts that are less attractive, we can maximize resources to investigate options with commercial potential,” Salciccioli said. 

According to Salciccioli, one major problem in biomass utilization is the difficulty in efficiently turning biomatter (corn husks and stalks, for example) into useful chemicals and fuels. A good catalyst speeds up a reaction, he said, enabling quicker production of desired chemicals. It also increases reaction selectivity, which means less waste, and reduces the need for energy intensive (and expensive) separation of undesired chemicals. 

“With respect to biofuels,” he continued, “this is incredibly important because biomass molecules are complex and require targeted removal of oxygen atoms to increase their energy density.” 

Mathematical modeling, however, can only take the research so far. To learn more about how catalysts behave under reaction conditions, Salciccioli turned to fellow doctoral student Weiting Yu, who uses experimental techniques and spectroscopy to visualize and characterize catalytic reactions.

Advised by Mark A. Barteau, Robert L. Pigford Chair of Chemical and Biomolecular Engineering and senior vice provost for research and strategic initiatives, and Jingguang G. Chen, Claire D. LeClaire Professor of Chemical and Biomolecular Engineering, Yu’s work contributes to understanding how catalysts cause different molecular bonds to break and produce different products, knowledge that is critical to creating effective chemicals, biofuels and fuel cells.

Yu’s experiments helped Salciccioli validate the reactions he was studying computationally, while Salciccioli’s research helped Yu predict the activity of catalysts critical to her work.

“Whether my results agree with Mike’s results is important. He may be able to fill holes in my work and vice versa,” said Yu.

The work resulted in a paper, published in the Journal of the American Chemical Society. Ultimately, it may also enable a new class of catalysts in biofuel production.

Salciccioli will defend his thesis this spring, before graduating in May. He has accepted a position with ExxonMobil Chemical in Houston, Texas, where he will continue work in catalysis and reaction engineering.

“By working together, we enhanced the quality of work each of us was able to achieve, as well as the depth of knowledge coming out of CCEI,” Salciccioli reflected. “More than anything else, working at CCEI has taught me that open communication and information sharing is integral to the acceleration of scientific progress. The center offers an unprecedented level of interaction and enhances graduate education."

“The Catalysis Center plays an important role in developing new technologies for sustainable energy applications through the conversion of biomass derivatives,” remarked Vlachos, CCEI director and Elizabeth Inez Kelley Professor of Chemical and Biomolecular Engineering. “We are working with colleagues both at UD and our partner institutions to make significant advances in catalysis, materials synthesis, in situ characterization and multiscale modeling. Additionally, we are training next generation engineers like Mike and Weiting to be leaders in their field.” 

Other innovations enabled through CCEI include:

• Introduction of the Sn-beta zeolite for isomerization of a broad range of substrates to valuable platform molecules.
• Development of single-pot technologies for the conversion of sugars to furans. This development brings the center one step closer to working with cellulose and hemicellulose, two of the most important constituents of non-food based biomass.
• Increased understanding of the chemical pathways of bio-oil derivatives on metals and transition metal carbide catalysts.
• Identification of monolayer bimetallics as very selective reforming catalysts.
• Demonstrated feasibility of direct carbon fuel cells running on biomass using molten metal electrolytes.
• Increased yield of aromatics as additives to gasoline in catalytic fast pyrolysis from solid biomass.

Explore further: Metal particle generates new hope for H2 energy

Related Stories

Metal particle generates new hope for H2 energy

June 28, 2011

( -- Tiny metallic particles produced by University of Adelaide chemistry researchers are bringing new hope for the production of cheap, efficient and clean hydrogen energy.

Designing chemical catalysts: There's an app for that

January 20, 2012

A big reason for publishing scientific results is to inform others who can then use your data and conclusions to make additional discoveries, technologies or products. But what good are findings if they are, well, hard to ...

Sensible use of biomass: A chemical industry based on renew

November 14, 2011

( -- Our industrialized world is largely dependent on fossil resources, whether for the generation of energy, as a fuel, or as a feedstock for the chemical industry. The environmental problems related to this ...

'Mini-cellulose' molecule unlocks biofuel chemistry

February 16, 2012

A team of chemical engineers at the University of Massachusetts Amherst has discovered a small molecule that behaves the same as cellulose when it is converted to biofuel. Studying this 'mini-cellulose' molecule reveals for ...

Chemistry professor developing sustainable bioplastics

January 19, 2012

( -- A Colorado State University chemistry professor has developed several patent-pending chemical processes that would create sustainable bioplastics from renewable resources for use on everything from optical ...

Recommended for you

Engineers test drug transfer using placenta-on-a-chip

February 16, 2018

Researchers at the University of Pennsylvania's School of Engineering and Applied Science have demonstrated the feasibility of their "organ-on-a-chip" platform in studying how drugs are transported across the human placental ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.