Hyperthermia treatment of cancer using magnetic nanoparticles: First detailed elucidation of heat generation mechanism

December 22, 2011, National Institute for Materials Science
Figure: An oriented structure of magnetic nanoparticles in hyperthermia treatment of cancer, compared to the well known case of an ordinary magnets. The schematic illustrations show (a) the needle of a magnetic compass oriented in the direction of the Earth’s magnetic field, and (b) ferromagnetic nanoparticles under irradiation with a high frequency magnetic field of weaker intensity than the anisotropic magnetic field, in which the nanoparticles align in planes perpendicular to the magnetic field.

Dr. Hiroaki Mamiya, a Senior Researcher of the Neutron Scattering Group, Quantum Beam Unit, National Institute for Materials Science, Japan, in collaboration with Prof. Balachandran Jeyadevan of the School of Engineering at the University of Shiga Prefecture have investigated theoretically the mechanism of hyperthermic potentiation of cancers using magnetic nanoparticles, which enables selective heating of hidden micro cancer tissue, and clarified the fact that the nanoparticles under large magnetic fields form unique oriented states, depending respectively on subtle differences in their local  environment in the cancer tissue and consequently affect the optimum heating conditions.

Magnetic thermotherapy of cancers has few side effects and active research on this technique, together with immunotherapy, is now in progress as a fourth treatment method, following surgery, radiotherapy, and chemotherapy. In particular, this technique is effective against microcarcinomas that evade detection.  In targeted magnetic hyperthermia treatment of cancers, (nanosized magnets) which act as thermal seeds under an alternating are transported to cancer cells using drug delivery technology. However, there are inconsistencies between experimental results and predictions of the amount of heat generated by the magnetic based on the existing simple models, and this has been a major obstacle to optimize the design of magnetic particles for practical application.

Conventionally, the magnetic response of nanoparticles had been calculated using analytical solutions of the models considering magnetostatic energy, where we can imagine a magnetic compass points to the direction of the Earth’s magnetic field. However, Dr. Mamiya’s team carried out a simulation under near-actual conditions, considering the fact that a large amount of heat is dissipated into the surrounding cancerous tissue and found that the oriented state of the magnetic nanoparticles changes dramatically depending on the size and shape of the nanoparticles, the viscosity of their surroundings, and the alternating magnetic field irradiation conditions. Among those conditions, there are cases in which the magnetic nanoparticles align in planes perpendicular to the magnetic field unlike magnetic compass when a high frequency magnetic field with comparatively weak amplitude is irradiated. Furthermore, this research also revealed that the heat generation property of the magnetic nanoparticles largely varies with the change of the steady orientation structure.

Once the knowledge gained in this research is verified and established using an in-situ observation technique employing a quantum beam with high penetrating power, it will be possible to optimize the magnetic thermal seeds and irradiation device for the attributes of the carcinoma being treated. This will be a major advance towards the practical application of hyperthermia treatment of cancers using nanoparticles.

This research achievement will be announced on November 15, 2011 in the online edition of Scientific Reports, which is an open access journal of the Nature Publishing Group.

Explore further: Nanoparticle thermotherapy as a chemotherapy alternative

Related Stories

Nanoparticle thermotherapy as a chemotherapy alternative

November 23, 2010

Using hyperthermia, Virginia Tech engineering researchers and a colleague from India unveiled a new method to target and destroy cancerous cells. The research was presented at the 63rd annual meeting of the American Physical ...

Magnetic nanoparticles: Suitable for cancer therapy?

May 28, 2008

A measuring procedure developed in the Physikalisch-Technische Bundesanstalt (PTB) can help to investigate in some detail the behaviour of magnetic nanoparticles which are used for cancer therapy.

How many nanoparticles heat the tumor?

August 9, 2010

Those who have to fight a powerful enemy must look for allies. This is why physicists from different scientific fields have decided to cooperate with biomedical physicians in order to place the fight against cancer through ...

Magnetic field directs nanoparticles to tumors

November 25, 2010

(PhysOrg.com) -- To improve the tumor-specific delivery of drug to tumors, a team of investigators from the University of California, San Diego (UCSD) has created a system of nanoparticles-within-a-nanoparticle that can be ...

New Nanoparticle Structure Boosts Magnetic Properties

December 19, 2005

Magnetic nanoparticles have shown promise as contrast-enhancing agents for improving cancer detection using magnetic resonance imaging (MRI), as miniaturized heaters capable of killing malignant cells, and as targeted drug ...

Recommended for you

Reinventing the inductor

February 21, 2018

A basic building block of modern technology, inductors are everywhere: cellphones, laptops, radios, televisions, cars. And surprisingly, they are essentially the same today as in 1831, when they were first created by English ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.