This article has been reviewed according to Science X's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

peer-reviewed publication

trusted source

proofread

Scientists develop dual-functional, high-efficiency antimicrobial nanozyme

Scientists develop dual-functional, high-efficiency antimicrobial nanozyme
Antibacterial mechanism of Ni-IH-7 peptide nanozyme. Credit: Gao Lizeng's group

A research team led by Prof. Gao Lizeng from the Institute of Biophysics of the Chinese Academy of Sciences proposed a bactericidal mechanism based on nanozymes that simulate antimicrobial peptides (AMPs) and antimicrobial enzymes (AMEs) according to biomimicry principles, and designed a dual-functional high-efficiency antimicrobial nanozyme.

Their research was published in Nature Communications on July 5.

Starting from the rational design of multi-peptide nanozymes, based on the key amino acids in the active sites of AMPs and AMEs, including histidine and cysteine, and combining peptide self-assembly and metal coordination principles, using various computational methods such as Alphafold2, , and density functional theory, the researchers optimized and selected a group of 7-peptide sequences IHIHICI.

The self-assembled nanozyme (AMPANs) possesses both AMP and AME functions, demonstrating specific and efficient fungicidal effects.

The researchers selected Ni(Ac)2-assembled peptide nanotubes (Ni-IH-7) as the research object. Enzymatic studies showed that Ni-IH-7 has phospholipase C-like activity and peroxidase-like activity.

Due to the formation of a stable secondary structure nanotube, the Ni-IH-7 peptide nanozyme exhibited good tolerance to various hydrolytic enzymes.

In addition, they found that the Ni-IH-7 peptide nanozyme could selectively bind to the mannoprotein on the surface of Candida albicans and induce , leading to iron death and hydrolysis of glycerophospholipids, thus rapidly killing the fungi.

In vitro colony smear plate experiments on vaginal discharge from patients with vaginitis confirmed that the Ni-IH-7 peptide had good antifungal effects and the bactericidal performance was not compromised by other substances in the secretions.

This study is the first to propose the strategy of combining with nanozymes, designing and synthesizing peptide nanozymes from scratch through computer simulation, and systematically studying their specific mechanism of killing fungi, providing insights for the development of novel antimicrobial drugs.

More information: Ye Yuan et al, Stable peptide-assembled nanozyme mimicking dual antifungal actions, Nature Communications (2024). DOI: 10.1038/s41467-024-50094-6

Journal information: Nature Communications

Citation: Scientists develop dual-functional, high-efficiency antimicrobial nanozyme (2024, July 17) retrieved 17 July 2024 from https://phys.org/news/2024-07-scientists-dual-functional-high-efficiency.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Nanozyme hydrogel: A breakthrough solution for Candida vaginitis treatment

0 shares

Feedback to editors