Starch-controlling gene fuels more protein in soybean plants

April 7, 2011
Ling Li and Eve Wurtele have placed a gene found only in Arabidopsis plants into soybean plants and increased the amount of protein in the soybean seeds by 30 to 60 percent. Credit: ISU photo by Bob Elbert

A newly discovered gene introduced into soybean plants has increased the amount of protein in the plant's seed and could hold promise for helping meet nutritional needs of a hungry world.

Eve Wurtele, professor of genetics, development and cell biology; and Ling Li, an adjunct assistant professor and an associate scientist working in her laboratory, have placed a gene found only in Arabidopsis plants into and increased the amount of protein in the soybean seeds by 30 to 60 percent.

The results were a pleasant surprise to the researchers as the function of the gene, known as QQS, in the Arabidopsis was previously unclear because its sequence is very dissimilar from all other plant genes.

Arabidopsis is a small, in the mustard family that is often used in scientific research.

"Most genes contain clues in their DNA sequence as to their ," said Wurtele. "But this one has no sequence features that gave us any hint of what it's doing."

When the researchers neutralized the gene in Arabidopsis, they discovered the gene was involved in regulating starch accumulation, called deposition.

"Based on the changes in activities of other genes that occurred when we altered QQS, we conjectured that it wasn't directly involved in starch synthesis, but rather it may be involved in altering [the plant's] composition in general," said Wurtele. "We decided to test this concept by transferring the gene to an agronomically important plant species, soybean, which has a seed and is important as a source of vegetable protein and oil."

"We found that the QQS transgene increased in the soybean seed," she added. "That was the best possible scenario."

In addition to having a DNA sequence that is not similar to any other gene in that or any other plant, the gene is also unusual because it has only 59 , Li said. The median size of a gene in Arabidopsis plants is 346 amino acids.

Li discovered the gene in 2004 and named it for her daughter.

"My daughter was a half-year old. This gene was so small and my daughter was so small," Li laughs. "QQ is my daughter's nickname in Chinese."

In addition to altering the protein-producing qualities of the gene, Wurtele hopes that the discovery may lead to greater understanding of other genes that don't have recognizable functionalities based on their sequences.

"This may give us an insight into the other genes with obscure features and provide us a window as to how they function," she said.

Wurtele hopes the discovery may help people in areas who survive on protein-deficient diets.

"We were so pleased [the gene] altered composition in soybean," she said. "What if this basic research discovery could lead to increased protein content in potatoes, cassava, or other crop species that are staples to people in developing nations?

"That would be better than I imagined."

Explore further: Tool helps identify gene function in soybeans

Related Stories

Tool helps identify gene function in soybeans

December 1, 2008

In the race for bioengineered crops, sequencing the genome could be considered the first leg in a multi-leg relay. Once the sequence is complete, the baton is passed forward to researchers to identify genes' functions. A ...

Gene discovery may lead to new varieties of soybean plants

April 27, 2010

(PhysOrg.com) -- Just months after the soybean genome was sequenced, a Purdue University scientist has discovered a long-sought gene that controls the plant's main stem growth and could lead to the creation of new types of ...

Midget plant gets makeover

June 22, 2009

A tiny plant with a long name (Arabidopsis thaliana) helps researchers from over 120 countries learn how to design new crops to help meet increasing demands for food, biofuels, industrial materials, and new medicines. The ...

Recommended for you

These shrews have heads that shrink with the season

October 23, 2017

If any part of the body would seem ill equipped to shrink, it would probably be the head and skull. And, yet, researchers reporting in Current Biology on October 23 have found that the skulls of red-toothed shrews do shrink ...

Single-molecule dissection of developmental gene control

October 23, 2017

Scientists at EPFL and Max Plank have made significant discoveries on how developmental genes are controlled by the methyltransferase enzyme PRC2. The study is published in Nature Structural & Molecular Biology.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.