Scientists identify cellular communicators for cancer virus

A new discovery by UNC scientists describes how cells infected by the Epstein-Barr virus (EBV) produce small vesicles or sacs called exosomes, changing their cellular "cargo" of proteins and RNA. This altered exosome enters cells and can change the growth of recipient cells from benign to cancer-producing.

In this way, virus-infected cells can have wide-ranging effects and potentially manipulate other cells throughout the body. The findings are reported in the November 8, 2010 early online edition of the .

Nancy Raab-Traub, PhD, professor of microbiology and Immunology, said, "Exosomes may be the Trojan Horse through which EBV gains control of cells that are not even infected. Importantly, the production of exosomes may provide a new that can be blocked to reduce ." Raab-Traub is a Sarah Graham Kenan Professor and member of UNC Lineberger Comprehensive Cancer Center.

Epstein-Barr Virus (EBV) is perhaps the world's most successful virus as almost everyone is infected with it for life. EBV cannot be eliminated by the and is constantly secreted into saliva where it is effectively transmitted. Infection with the virus rarely causes disease; however, EBV is found in several major cancers, including lymphoma and cancer of the nose and throat, where its proteins hijack the cell's growth regulatory mechanisms to induce uncontrolled cell growth characteristic of cancer.

Through exosomes, a protein called latent membrane 1, that is considered the EBV oncogene, can be delivered to uninfected cells. Significantly, EBV also changes the entire contents of the exosomes to deliver cellular proteins that are also activated in cancers. This surprising finding reveals that one infected cell can have wide-ranging effects and induce the unchecked growth of neighboring cells.

The immune system is constantly on guard to identify foreign viral proteins. Through exosomal uptake, would be stimulated to grow without the expression of proteins that "announce" infection to the immune system, thus allowing unchecked growth. The study also showed that the that produce blood vessels, the process called angiogenesis, readily take in the altered exosomes and are potentially induced to grow.

"The next step," explains David Meckes, PhD, postdoctoral fellow in the Raab-Traub lab and first author of the paper, "is to determine how the virus controls which proteins are sorted into exosomes and how this process could be inhibited."


Explore further

A tricky tumor virus

Citation: Scientists identify cellular communicators for cancer virus (2010, November 8) retrieved 20 September 2019 from https://phys.org/news/2010-11-scientists-cellular-cancer-virus.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
0 shares

Feedback to editors

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more