Researchers explore magnetic properties of iron-based superconductors

March 16, 2009
These are BCS superconductors. Credit: Naval Research Laboratory

Scientists at the Naval Research Laboratory (NRL) have proposed theoretical models to explain the normal magnetic properties in iron-based superconductors. This research was published in the December 21, 2008 issue of Nature Physics. Their research builds on earlier research they conducted proposing a theoretical model for superconductivity in newly discovered iron-based superconductors. That earlier research was published in Physical Review Letters.

To set the stage for the NRL researchers' recent accomplishments, looking back over the last 50 years, the following are three very important discoveries in terms of :

• high-Tc cuprates in 1988, with critical temperature up to 160 K,
• Magnesium diboride (MgB2) (2001, 39 K) and
• iron-based (2008, up to 57 K).

This figure illustrates superconductivity in cuprates. Credit: Naval Research Laboratory

in cuprates (chemical compounds containing copper oxide) is believed to originate from electron-electron interaction, magnetic or Coulomb, and is understood as so-called d-wave symmetry superconductivity.

While in conventional BCS superconductors, the superconducting order parameter is the same for all electrons, as illustrated in the first panel, for d-wave it actually changes sign depending on the direction in which an electron moves (roughly, like cos2α). It is worth noting that in 20 years more than 100,000 papers have been published studying the high-Tc cuprates.

Many believe that MgB2 was the next milestone in the area of superconducting materials for the reason that the mechanism there is conventional, yet critical temperature is much higher that in any other conventional superconductor, and, at that time, was second only to cuprates. It appeared that MgB2 was the first example of a multigap superconductor, where the order parameter never changes sign, but is rather different for different groups of electrons. This fact was theoretically predicted at NRL and soon confirmed through experiments. While not elevating exactly to the level of excitement that cuprates produced, MgB2 resulted in 4,000 publications in seven years.

The most recent breakthrough in superconductivity was discovery of high-temperature superconductivity in iron-based material such as LaFeAsO, BaFe2As2, and others. With iron being a strongly magnetic species, these materials immediately promised a new paradigm in search of new superconductors. Indeed, it became increasingly clear that superconductivity here is very dissimilar to either cuprates or MgB2, and that string magnetism of iron likely plays a crucial role. Within a few months after the initial discovery, two NRL scientists, Dr. Igor Mazin and Dr. Michelle Johannes from the Materials Science and Technology Division, in collaboration with two researchers at Oak Ridge (both NRL alumni), proposed that a totally new superconducting state is realized in FeAs superconductors, which they dubbed "s±", where two groups of electrons sport not only different order parameters, but also different signs.

The compound MgB2. Credit: Naval Research Laboratory

Soon experimental evidence began to accumulate in favor of the NRL researchers' proposal, and currently is generally considered as the most likely scenario. Their paper was posted on March 19, 2008, and published in on August 1, 2008, and by December 2008 had been cited in other articles and preprints more than a hundred times. These novel materials remain one of the hottest issues in physics; since their discovery, papers on this subject have been appearing at a steady rate of 2.5 per day. Should this rate remain active, the number of publications will surpass that on MgB2 in four years.

It appears though that superconductivity is not the only mystery of these so-called ferropnictides. In the undoped state, they demonstrate highly unusual with a very rare magnetic ordering pattern and highly unstable measurable magnitude of the magnetic moment. In fact, by small modifications of the materials they can be driven from practically nonmagnetic state to a strong magnetism comparable to that in pure iron. Most shockingly, the transition temperature barely changes. Some of the systems feature two transitions: a magnetic one, and a magnetically driven structural one. But, these occur counterintuitively; the structural transition occurs first and the magnetic one next. These and many other properties can hardly be explained by existing theories.

In the December 2008 article, Drs. Mazin and Johannes propose a highly unusual ground state. They suggest that the Fe ions are always magnetic in ferropnictides, but the observable magnetic moment is strongly reduced or entirely suppressed because of formation of antiferromagnetic domains whose boundaries are dynamic and strongly fluctuation. Observable long-range order appears when domains are large and their walls are pinned. Structural transition without observable long-range magnetism occurs when domain boundaries are predominantly antiphase ones so that the x/y symmetry is broken even though there is no long-range order. Superconducting composition where neither long-range magnetism nor structural distortions are observed corresponds to twin domains, which are small and their boundaries are dynamic. Should this conjecture be corroborated by the experiment, researchers will be entering an entirely new world of magnetic excitations (topological excitations of domain boundaries) that will most likely be very important, if not instrumental for the high-Tc superconductivity in ferropnictides.

Source: Naval Research Laboratory (news : web)

Explore further: New theory for latest high-temperature superconductors

Related Stories

New theory for latest high-temperature superconductors

August 13, 2008

Physicists from Rice and Rutgers universities have published a new theory that explains some of the complex electronic and magnetic properties of iron "pnictides." In a series of startling discoveries this spring, pnictides ...

Superconductivity can induce magnetism

September 11, 2008

When an electrical current passes through a wire it emanates heat - a principle that's found in toasters and incandescent light bulbs. Some materials, at low temperatures, violate this law and carry current without any heat ...

Secrets behind high temperature superconductors revealed

February 22, 2009

( -- Scientists from Queen Mary, University of London and the University of Fribourg (Switzerland) have found evidence that magnetism is involved in the mechanism behind high temperature superconductivity.

Recommended for you

On the rebound

January 22, 2018

Our bodies have a remarkable ability to heal from broken ankles or dislocated wrists. Now, a new study has shown that some nanoparticles can also "self-heal" after experiencing intense strain, once that strain is removed.

Nanoparticle gel controls twisted light with magnetism

January 22, 2018

"Help me, Obi Wan Kenobi. You're my only hope." For many of those around at the release of Star Wars in 1977, that scene was a first introduction to holograms—a real technology that had been around for roughly 15 years.

Information engine operates with nearly perfect efficiency

January 19, 2018

Physicists have experimentally demonstrated an information engine—a device that converts information into work—with an efficiency that exceeds the conventional second law of thermodynamics. Instead, the engine's efficiency ...

Team takes a deep look at memristors

January 19, 2018

In the race to build a computer that mimics the massive computational power of the human brain, researchers are increasingly turning to memristors, which can vary their electrical resistance based on the memory of past activity. ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Mar 22, 2009
Always with the DC.

Whatever happened with experimenting with AC function?

You'd find out some damn interesting things that way.


Anyone home in superconductor design/experimentation land?

The natural state of function is 4-state rotational. Get it?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.