Platinum and light together fight cancer

Sep 14, 2010

(PhysOrg.com) -- Researchers continue to search for cancer treatments that effectively destroy tumor cells while protecting surrounding healthy tissue and the body. One intriguing approach involves photoactivated drugs: an inactive precursor would be administered, then the diseased tissue could be irradiated to convert the drug into its cytotoxic form locally.

Peter J. Sadler and his co-workers at the Universities of Warwick and Edinburgh, as well as the Ninewells Hospital in Dundee, have developed a new complex that is suitable for this approach. As the British researchers report in the journal , this new drug was demonstrably superior to conventional cisplatin.

The challenge in the production of photactivated cystostatic drugs is that the inactive form must be thermally stable and must reach its target areas, such as the DNA of diseased cells, intact prior to irradiation. Such compounds must thus be resistant to reactive biomolecules like the reductant , which is present at high concentrations in all cells. “Another challenge lies in controlling the wavelength of light used to activate the drug,” says Sadler. “The wavelength determines how far into the irradiated tissue the light can travel. Longer wavelengths go in farther than shorter ones.”

Platinum complexes are proven antitumor agents. Cisplatin is one prominent example. However, platinum drugs have significant side effects. Sadler and his co-workers hope that these can be reduced through the use of photoactivated platinum drugs. To achieve this they have developed a new platinum complex that contains two azido (N3), two hydroxy (OH), and two pyridine ligands. In its inactive form, the complex demonstrates the required stability, even toward reactive . “The special thing about our complex is that is not only activated by UV light,” reports Sadler, “but also by low doses of blue or green light.” Light activation generates a powerful cytotoxic compound that has proven to be significantly more effective than cisplatin against a whole series of cancer cells tested. Says Sadler: “ The mechanism by which this drug works is clearly different from . This is likely due to the two pyridine ligands that remain bound to the platinum after photoactivation.”

“We hope that photoactivated platinum complexes will make it possible to treat cancers that have previously not reacted to chemotherapy with platinum complexes,” says Sadler. “Tumors that have developed resistance to conventional platinum drugs could respond to these complexes.”

Explore further: Engineering a protein to prevent brain damage from toxic agents

More information: Author: Peter J. Sadler, A Potent Trans-Diimine Platinum Anticancer Complex Photoactivated by Visible Light, Angewandte Chemie International Edition, dx.doi.org/10.1002/anie.201003399

Related Stories

How Does the Antitumor Drug Get to the Cell Nucleus?

Oct 30, 2007

Platinum complexes such as the well-known cisplatin are powerful antitumor medications. They cross the cell membrane and reach the nucleus, where they attach to DNA and stop cell growth. But how does cisplatin get to the ...

Metals could forge new cancer drug

Oct 19, 2009

Drugs made using unusual metals could form an effective treatment against colon and ovarian cancer, including cancerous cells that have developed immunity to other drugs, according to research at the University ...

Gold Nanoparticles Delivery Platinum Warheads to Tumors

Oct 29, 2009

(PhysOrg.com) -- Cisplatin is one of the most powerful and effective drugs for treating a wide variety of cancers, but serious side effects ultimately limit the drug's use and effectiveness. Now, however, researchers have ...

Recommended for you

Two teams pave way for advances in 2D materials

1 hour ago

This month's headlines on two-dimensional polymers showed noteworthy headway. "2-D Polymer Crystals Confirmed At Last," said Chemical & Engineering News. "Engineers Make the World's First Verified, 2-Dimensional P ...

Nature inspires a greener way to make colorful plastics

20 hours ago

Long before humans figured out how to create colors, nature had already perfected the process—think stunning, bright butterfly wings of many different hues, for example. Now scientists are tapping into ...

New catalyst converts carbon dioxide to fuel

22 hours ago

Scientists from the University of Illinois at Chicago have synthesized a catalyst that improves their system for converting waste carbon dioxide into syngas, a precursor of gasoline and other energy-rich products, bringing ...

Bullet 'fingerprints' to help solve crimes

22 hours ago

Criminals don't just have to worry about their own fingerprints these days: because of a young forensic scientist at The University of Western Australia, they should also be very concerned about their bullets' ...

User comments : 0