Extreme darkness: Carbon nanotube forest covers NIST's ultra-dark detector

Aug 18, 2010
This is a colorized micrograph of the world's darkest material -- a sparse "forest" of fine carbon nanotubes -- coating a NIST laser power detector. Image shows a region approximately 25 micrometers across. Credit: Aric Sanders, NIST

Harnessing darkness for practical use, researchers at the National Institute of Standards and Technology have developed a laser power detector coated with the world's darkest material -- a forest of carbon nanotubes that reflects almost no light across the visible and part of the infrared spectrum.

NIST will use the new ultra-dark detector, described in a new paper in ,* to make precision laser power measurements for advanced technologies such as optical communications, laser-based manufacturing, solar energy conversion, and industrial and satellite-borne sensors.

Inspired by a 2008 paper by Rensselaer Polytechnic Institute (RPI) on "the darkest man-made material ever,"** the NIST team used a sparse array of fine nanotubes as a coating for a thermal detector, a device used to measure . A co-author at Stony Brook University in New York grew the nanotube coating. The coating absorbs and converts it to heat, which is registered in pyroelectric material (lithium tantalate in this case). The rise in temperature generates a current, which is measured to determine the power of the laser. The blacker the coating, the more efficiently it absorbs light instead of reflecting it, and the more accurate the measurements.

The new NIST detector uniformly reflects less than 0.1 percent of light at wavelengths from deep violet at 400 nanometers (nm) to near infrared at 4 micrometers (μm) and less than 1 percent of light in the infrared spectrum from 4 to 14 μm. The results are similar to those reported for the RPI material and in a 2009 paper by a Japanese group. The NIST work is unique in that the nanotubes were grown on pyroelectric material, whereas the other groups grew them on silicon. NIST researchers plan to extend the calibrated operating range of their device to 50 or even 100 micrometer wavelengths, to perhaps provide a standard for terahertz radiation power.

NIST previously made detector coatings from a variety of materials, including flat nanotube mats. The new coating is a vertical forest of multiwalled nanotubes, each less than 10 nanometers in diameter and about 160 micrometers long. The deep hollows may help trap light, and the random pattern diffuses any reflected light in various directions. Measuring how much light was reflected across a broad spectrum was technically demanding; the NIST team spent hundreds of hours using five different methods to measure the vanishingly low reflectance with adequate precision. Three of the five methods involved comparisons of the nanotube-coated detector to a calibrated standard.

Carbon nanotubes offer ideal properties for thermal coatings, in part because they are efficient heat conductors. Nickel phosphorous, for example, reflects less at some wavelengths, but does not conduct heat as well. The new materials also are darker than NIST's various Standard Reference Materials for black color developed years ago to calibrate instruments.

Explore further: Nanoparticles give up forensic secrets

More information:
* J. Lehman, A. Sanders, L. Hanssen, B. Wilthan and J. Zeng. 2010. A Very Black Infrared Detector from Vertically Aligned Carbon Nanotubes and Electric-field Poling of Lithium Tantalate. Nano Letters. Posted online Aug. 3, 2010.
** Z.P. Yang, L. Ci, J.A. Bur, S.Y. Lin and P.M. Ajayan. Experimental observation of an extremely dark material made by a low-density nanotube array. Nano Letters. Vol. 8, No. 2, 446-451.

Related Stories

New Nanotube Coating Enables Novel Laser Power Meter

May 06, 2009

(PhysOrg.com) -- The U.S. military can now calibrate high-power laser systems, such as those intended to defuse unexploded mines, more quickly and easily thanks to a novel nanotube-coated power measurement ...

New NIST Method Improves Accuracy of Spectrometers

Jun 16, 2005

Measurements of the intensity of light at different wavelengths can be made more accurately now, thanks to a new, simple method for correcting common instrument errors. The new method, developed by researchers at the National ...

NIST releases new standard for semiconductor industry

Oct 12, 2006

A wide range of optical electronic devices, from laser disk players to traffic lights, may be improved in the future thanks to a small piece of semiconductor, about the size of a button, coated with aluminum, gallium, and ...

Recommended for you

Nanoparticles give up forensic secrets

10 hours ago

A group of researchers from Switzerland has thrown light on the precise mechanisms responsible for the impressive ability of nanoparticles to detect fingermarks left at crime scenes.

Blades of grass inspire advance in organic solar cells

Sep 30, 2014

Using a bio-mimicking analog of one of nature's most efficient light-harvesting structures, blades of grass, an international research team led by Alejandro Briseno of the University of Massachusetts Amherst ...

How to make a "perfect" solar absorber

Sep 29, 2014

The key to creating a material that would be ideal for converting solar energy to heat is tuning the material's spectrum of absorption just right: It should absorb virtually all wavelengths of light that ...

User comments : 0