New antibacterial material for bandages, food packaging, shoes

Jul 21, 2010
A new form of paper made of super-thin sheets of carbon could help fight disease-causing bacteria in applications ranging from anti-bacterial bandages to food packaging. Credit: ACS Nano

A new form of paper with the built-in ability to fight disease-causing bacteria could have applications that range from anti-bacterial bandages to food packaging that keeps food fresher longer to shoes that ward off foot odor. A report about the new material, which consists of the thinnest possible sheets of carbon, appears in ACS Nano.

Chunhai Fan, Qing Huang, and colleagues explained that scientists in the United Kingdom first discovered the material, known as , in 2004. Since then, the race has been on to find commercial and industrial uses for graphene. Scientists have tried to use graphene in , computer chips, and . Fan and Huang decided to see how graphene affects living cells.

So they made sheets of paper from graphene oxide, and then tried to grow bacteria and human cells on top. Bacteria were unable to grow on the paper, and it had little adverse effect on human cells. "Given the superior antibacterial effect of graphene oxide and the fact that it can be mass-produced and easily processed to make freestanding and flexible paper with low-cost, we expect this new carbon nanomaterial may find important environmental and clinical applications," the reports states.

Explore further: Carbon nanoballs can greatly contribute to sustainable energy supply

More information: "Graphene-Based Antibacterial Paper", ACS Nano.

add to favorites email to friend print save as pdf

Related Stories

A huge step toward mass production of graphene

Mar 10, 2010

Scientists have leaped over a major hurdle in efforts to begin commercial production of a form of carbon that could rival silicon in its potential for revolutionizing electronics devices ranging from supercomputers ...

A 'huge step' toward mass production of graphene

Jun 09, 2010

Scientists have leaped over a major hurdle in efforts to begin commercial production of a form of carbon that could rival silicon in its potential for revolutionizing electronics devices ranging from supercomputers ...

Super-thin carbon sheets poised to revolutionize electronics

Mar 02, 2009

Super-thin films of carbon with exotic properties, now taking the scientific world by storm, may soon mean a new era of brighter, faster, and smaller computers, smart phones, and other consumer electronics. Brighter digital ...

Recommended for you

Researchers use oxides to flip graphene conductivity

Jan 26, 2015

Graphene, a one-atom thick lattice of carbon atoms, is often touted as a revolutionary material that will take the place of silicon at the heart of electronics. The unmatched speed at which it can move electrons, ...

Researchers make magnetic graphene

Jan 26, 2015

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic ...

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

Gold 'nano-drills'

Jan 22, 2015

Spherical gold particles are able to 'drill' a nano-diameter tunnel in ceramic material when heated. This is an easy and attractive way to equip chips with nanopores for DNA analysis, for example. Nanotechnologists ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.