Highlight: Probing a complex oxide interface directly

Jul 21, 2010
Probing a complex oxide interface directly
Electronic properties have been measured as function of the distance to the interface between La2/3Ca1/3MnO3 and Nb-doped SrTiO3.

(PhysOrg.com) -- A novel way to directly detect the electronic properties at a complex oxide interface has been demonstrated by users from Argonne's Advanced Photon Source working collaboratively with researchers in the Electronic & Magnetic Materials Devices Group (Argonne National Laboratory).

While powerful spatially resolved tools exist for visualizing the chemical and magnetic structure of an interface, direct observation of electronic behavior across the interface presents a major experimental challenge.

The scientists harnessed the high sensitivity to electronic local density of states (LDOS) of cross-sectional scanning tunneling microscopy and spectroscopy (XSTM/S) to visualize at the interface between colossal magnetoresistant manganite La2/3Ca1/3MnO3 and semiconducting Nb-doped SrTiO3.

By extending XSTM/S to the interface, they mapped the LDOS across the boundary, unambiguously visualizing the by the location of the valence band, and elucidated the fundamental issue of band alignment at a complex oxide heterointerface.

Explore further: New research predicts when, how materials will act

More information: T.Y. Chien, J. Liu, J. Chakhalian, N. P. Guisinger, and J. W. Freeland, Phys. Rev. B, 82, 041101(R) (2010). Editor’s Suggestion

add to favorites email to friend print save as pdf

Related Stories

Highlight: Nanopatterning of Graphene

Mar 11, 2010

Center for Nanoscale Materials (CNM) at Argonne National Laboratory users from Politecnico di Milano in Italy, working collaboratively with researchers in the Electronic & Magnetic Materials & Devices Group, ...

Superconductivity Physicists Puzzled by the Weird Behavior of Electrons

Jul 30, 2004

The weird behavior of electrons tunneling across an atomically flat interface within a cuprate superconductor has defied explanation by theories of high-temperature superconductivity. As will be reported in the journal Physical Review Letters, a team of scientists l ...

Recommended for you

New filter could advance terahertz data transmission

48 minutes ago

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

58 minutes ago

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

2 hours ago

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

3 hours ago

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

15 hours ago

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

solidspin
not rated yet Jul 23, 2010
huh? hadrondivorce? placeable neutron? what on earth are you talking about?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.