Highlight: Nanopatterning of Graphene

Hydrogen passivated graphene imaged and patterned at the atomic scale with STM
Hydrogen passivated graphene imaged and patterned at the atomic scale with STM

Center for Nanoscale Materials (CNM) at Argonne National Laboratory users from Politecnico di Milano in Italy, working collaboratively with researchers in the Electronic & Magnetic Materials & Devices Group, have demonstrated the reversible and local modification of the electronic properties of graphene by hydrogen passivation and subsequent electron-stimulated hydrogen desorption with a scanning tunneling microscope (STM) tip.

Graphene is a nearly ideal two-dimensional conductor consisting of a single sheet of hexagonally packed carbon atoms. The hydrogen passivation modifies graphene’s electronic properties, opening a gap in the local density of states.

The insulating state is reversed by local desorption of the , upon which the unaltered electronic properties are recovered. Using this mechanism, graphene patterns can be “written” on nanometer length scales. For patterned regions 20 nm or greater, the inherent electronic properties of graphene are completely recovered. Below 20 nm, dramatic variations in the are observed.

This reversible and local mechanism has far-reaching implications for nanoscale circuitry fabricated from this revolutionary material.


Explore further

Scientists discover ground-breaking material: Graphane

More information: P. Sessi, J. R. Guest, M. Bode, N. P. Guisinger, Nano Letters, 9, 4343 (2009).
Citation: Highlight: Nanopatterning of Graphene (2010, March 11) retrieved 26 June 2019 from https://phys.org/news/2010-03-highlight-nanopatterning-graphene.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
0 shares

Feedback to editors

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more