In Brief: Exploring the limits of antiferromagnetism in nanostructured materials

October 9, 2009
(Top) Schematic of the spin structure of the Mn monolayer on W(110) (6-nm repeat structure). (a) Topography and (b) differential conductance at 40 K. (Inset) High-resolution topographic data taken with a spin-sensitive tip; stripe contrast is related to the degree of antiferromagnetic order.

(PhysOrg.com) -- Researchers in the Electronic & Magnetic Materials & Devices Group (Argonne National Laboratory) and at Politecnico di Milano in Italy explored the limits of antiferromagnetism in a nanostructured material for the first time, measuring the temperature required to support antiferromagnetic order in atomic monolayers of manganese on tungsten as the dimensions of the structures are reduced.

While these boundaries are well understood in ferromagnetic materials, antiferromagnetic materials - where neighboring magnetic moments cancel rather than add together - have proven more challenging to unravel.

This study exploits the unique properties of manganese spin spirals on tungsten to correlate spin-sensitive scanning tunneling microscopy techniques on the atomic scale with electronic signatures, showing that the ordering temperature for the antiferromagnetic structure depends both on its size and its orientation with respect to the crystal lattice.

Such investigations will help guide the way to next generation platforms for ultra-high-density data storage and novel sensing capabilities.

More information: Paolo Sessi, Nathan P. Guisinger, Jeffrey R. Guest, and Matthias Bode, Phys. Rev. Lett. (in press)

Provided by Argonne National Laboratory (news : web)

Explore further: Spintronic Materials Show Their First Move

Related Stories

Spintronic Materials Show Their First Move

March 23, 2005

How much energy does it take for an electron to hop from atom to atom, and how do the magnetic properties of the material influence the rate or ease of hopping? Answers to those questions could help explain why some materials, ...

Studying Magnetic Interface Ferromagnetism

June 28, 2007

The development of various magnetic-based devices, such as read-heads found inside your computer, depends on the discovery and improvement of new materials and magnetic effects.

Recommended for you

Graphene photodetector enhanced by fractal golden 'snowflake'

January 16, 2017

(Phys.org)—Researchers have found that a snowflake-like fractal design, in which the same pattern repeats at smaller and smaller scales, can increase graphene's inherently low optical absorption. The results lead to graphene ...

Nanoscale view of energy storage

January 16, 2017

In a lab 18 feet below the Engineering Quad of Stanford University, researchers in the Dionne lab camped out with one of the most advanced microscopes in the world to capture an unimaginably small reaction.

Scientists create first 2-D electride

January 11, 2017

(Phys.org)—Researchers have brought electrides into the nanoregime by synthesizing the first 2D electride material. Electrides are ionic compounds, which are made of negative and positive ions. But in electrides, the negative ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.