Reprogrammed cells 'remember,' retain characteristics of their cells of origin

Jul 19, 2010

(PhysOrg.com) -- Investigators at the Massachusetts General Hospital (MGH) Center for Regenerative Medicine have confirmed that induced pluripotent stem cells (iPSCs) retain some characteristics of the cells from which they were derived, something that could both assist and impede potential clinical and research uses. In their report that will be published in Nature Biotechnology and has received early online release, the researchers also describe finding that these cellular "memories" fade and disappear as cell lines are cultured through successive generations.

"How faithfully iPSCs can be reprogrammed into a truly embryonic state has been a longstanding question, and we have found that the cell of origin does affect the capacity of iPSCs to differentiate in vitro into particular cell types," says Konrad Hochedlinger, PhD, of the MGH Center for Regenerative Medicine who led the research team. "But when cultured iPSCs go through many rounds of cell division, they lose that memory."

A similar study from researchers at Children's Hospital Boston, published simultaneously in the journal Nature, also finds that cellular "memory" affects the potential of iPSCs. That report compared iPSCs with cells generated by somatic cell nuclear transfer (NT) - the technique used to clone animals - and finds that NT cells are closer to embryonic than iPSCs. "We still need to study the mechanisms by which nuclear transfer reprograms cells, because that process seems to work more efficiently and faithfully and may teach us how to make better iPS cells," says George Daley, MD, PhD, who led the Children's study. Both Hochedlinger and Daley are faculty members at the Harvard Stem Cell Institute (HSCI).

Generated from adult cells, iPSCs have many characteristics of embryonic stem cells but are also known to have important differences. Earlier studies found differences in function and between iPSCs that appeared to echo characteristics of the original adult cells. To discover whether donor cell patterns of gene expression truly persisted, the MGH team studied cells from genetically identical mice originally generated from iPSCs.

They indeed found differences in gene expression between iPSCs generated from different types of cells - skin cells, two type of immune cells, and muscle progenitor cells - from the same animal. Examining iPSCs generated from different animals revealed that differences based on the cell of origin were even greater than differences based on the animal of origin. There were also significant similarities between iPSCs and cells of origin in factors related to the epigenetic control of gene expression. In addition, the potential of iPSCs to differentiate into particular cell types varied, with those originating from either immune cells or muscle precursions being much easier to coax into forming blood progenitors than were iPSCs derived from skin cells.

Long-term culturing of any type of cell requires regularly splitting cultures into smaller populations and transferring them into new dishes or plates, a process called passaging. Because previous studies had suggested that repeated passaging could strengthen iPSC's similarities to embryonic stem cells, the research team investigated whether the process might help erase the cellular memory. Their experiments confirmed that cell-of-origin-based differences - both transcriptional and epigenetic - became less pronounced with subsequent passaging and totally disappeared by the 16th passage.

"Completely reprogramming cells appears to be a gradual process that continues beyond the iPSC stage, which may explain many of the reported differences between iPSCs and ," says Hochedlinger. "The propensity of early-passage iPSCs to regenerate specific cell types could have clinical advantages, but there also are implications for the use of iPSCs to model diseases, since we'll need to make sure that differences between cells derived from patients and from healthy controls really reflect a disease process and not this cell-of-origin memory."

Hochedlinger is an associate professor of Stem Cell and Regenerative Biology at Harvard University and Harvard Medical School. Lead author of the paper is Jose Polo, PhD, of the MGH Center for Regenerative Medicine and HCSI.

Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $600 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, systems biology, transplantation biology and photomedicine.

Explore further: Team publishes evidence for natural alternative to antibiotic use in livestock

Related Stories

New type of human stem cell may be more easy to manipulate

Jun 08, 2010

Researchers from the Massachusetts General Hospital Center for Regenerative Medicine (MGH-CRM) and the Harvard Stem Cell Institute have a developed a new type of human pluripotent stem cell that can be manipulated more readily ...

Memories of the way they used to be

Sep 18, 2009

A team of researchers from the University of California, San Diego School of Medicine and the Salk Institute for Biological Studies in La Jolla have developed a safe strategy for reprogramming cells to a pluripotent ...

How Useful Are Adult Stem Cells, Really?

Apr 26, 2010

(PhysOrg.com) -- With the debate (especially in the U.S.) raging over ethics of using embryonic stem cells in research to cure diseases like ALS, Parkinsons, Type 1 diabetes and even spinal cord injuries, ...

Reprogrammed mouse fibroblasts can make a whole mouse

Jul 23, 2009

In a paper publishing online July 23 in Cell Stem Cell, a Cell Press journal, Dr. Shaorong Gao and colleagues from the National Institute of Biological Sciences in Beijing, China, report an important advance in the charac ...

Recommended for you

Researchers capture picture of microRNA in action

Oct 30, 2014

Biologists at The Scripps Research Institute (TSRI) have described the atomic-level workings of "microRNA" molecules, which control the expression of genes in all animals and plants.

Blocking a fork in the road to DNA replication

Oct 30, 2014

A team of Whitehead Institute scientists has discovered the surprising manner in which an enigmatic protein known as SUUR acts to control gene copy number during DNA replication. It's a finding that could shed new light on ...

Cell division, minus the cells

Oct 30, 2014

(Phys.org) —The process of cell division is central to life. The last stage, when two daughter cells split from each other, has fascinated scientists since the dawn of cell biology in the Victorian era. ...

A new method simplifies the analysis of RNA structure

Oct 30, 2014

To understand the function of an RNA molecule, similar to the better-known DNA and vital for cell metabolism, we need to know its three-dimensional structure. Unfortunately, establishing the shape of an RNA ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.