A pinch of light: Laser 'tweezers' for medicine, communications and harvesting energy

Jul 06, 2010
This diagram shows TAU's holographic laser tweezers. Credit: AFTAU

Star Trek fans will remember "tractor beams," lasers that allowed the Starship Enterprise to trap and move objects. Tel Aviv University is now turning this science fiction into science fact -- on a nano scale.

A new tool developed by Tel Aviv University, Holographic (HOTs) use holographic technology to manipulate up to 300 nanoparticles at a time, such as beads of glass or polymer, that are too small and delicate to be handled with traditional laboratory instruments. The technology, also known as "optical tweezers," could form the basis for tomorrow's ultra-fast, light-powered communication devices and quantum computers, says Dr. Yael Roichman of Tel Aviv University's School of Chemistry.

She's using these tweezers to build that control beams of , aiding in the development of anything from optical microscopes to light-fuelled computer technology, she reports.

Holding onto the light

HOTS are a new family of optical tools that use a strongly-focused light beam to trap, manipulate and transform small amounts of matter. First proposed as a scientific theory in 1986 and prototyped by a University of Chicago team in 1997, holographic optical tweezers have been lauded as indispensible for researching cutting-edge ideas in physics, chemistry, and biology.

Dr. Roichman and her team of researchers are currently pioneering the use of optical tweezers to create the next generation of . Made out of carefully arranged particles of materials such as and , these devices have the ability to insulate light, allowing less energy to be lost in transmission.

"Our invention could increase transmission speed and save energy, important for long-life batteries in computers, for instance," says Dr. Roichman.

Photons are already used in optical fibers that bring us everyday luxuries like cable TV. But Dr. Roichman says this technology can be taken much further. In her lab at Tel Aviv University, she is advancing the previous study of photonic crystals, which control and harness light, by manipulating a variety of particles to create 3D heterogeneous structures. The ability to insulate light in a novel way, preserving its potential energy, is central to this goal.

No known material today can resist the flow of light -- its energy is either absorbed by, reflected off, or passed through materials. But Dr. Roichman has devised a new layering technique using special crystals central to the creation of photonic devices. These photonic crystals are arranged to create a path along which light can travel. If they're arranged correctly, she says, the light is trapped along the path.

In Dr. Roichman's approach, different materials are added to absorb or amplify light as required. She is hopeful that the ability to build these devices will transform communications, telescopic instruments, and even medical technology, making them more efficient and powerful.

Shining a light into a bacterium's belly

One project Dr. Roichman is working on tracks the effectiveness of antibiotics. Her improvements to optical microscopy will, for the first time, allow researchers to look at the internal processes within bacteria and see how different types of antibiotics attack them. More than that, her optical tweezers can isolate the bacteria to be studied, handling them without killing them.

Dr. Roichman, whose previous research was published in the journals Applied Optics and Physics Review Letters, notes that HOTs give researchers a platform with infinite possibilities. They give science a valuable tool to reach into the microscopic world -- and their building potential is endless.

Explore further: New terahertz device could strengthen security

Related Stories

Nanotechnology gets a new light touch

Oct 02, 2009

(PhysOrg.com) -- Building the super-fast computers of the future has just become much easier thanks to an advance by Australian researchers that lets them grab hold of tiny electronics components and probe ...

Optoelectronic tweezers push nanowires around

Apr 27, 2007

In efforts that can improve studies of biological objects and the construction of nanotech materials, researchers at the University of California-Berkeley have invented "optoelectronic tweezers," a new way of controlling ...

Fabricating 3D Photonic Crystals

Jan 21, 2009

(PhysOrg.com) -- “In photonic crystals, the ability to control the structure of a material in full three dimensional space, allows you to control the way that light flows through it,” John Rogers tells PhysOrg.com. “Thi ...

Recommended for you

New terahertz device could strengthen security

Nov 21, 2014

We are all familiar with the hassles that accompany air travel. We shuffle through long lines, remove our shoes, and carry liquids in regulation-sized tubes. And even after all the effort, we still wonder if these procedures ...

CERN makes public first data of LHC experiments

Nov 21, 2014

CERN today launched its Open Data Portal where data from real collision events, produced by experiments at the Large Hadron Collider (LHC) will for the first time be made openly available to all. It is expected ...

New technique allows ultrasound to penetrate bone, metal

Nov 20, 2014

Researchers from North Carolina State University have developed a technique that allows ultrasound to penetrate bone or metal, using customized structures that offset the distortion usually caused by these ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.