# Stirring the ocean: Calculating the role of the oceans' swimmers

##### Jun 29, 2010 by Terry Devitt

(PhysOrg.com) -- The world's oceans, we know, are constantly shaken and stirred by the winds and the tides and other physical forces of nature. But what about fish and other swimming marine life? Do they stir the ocean, too?

Since the question was first posed by pioneering oceanographer Walter Munk in 1966, some rough "top down" calculations have emerged suggesting that marine swimmers — everything from to krill — could contribute a significant portion of the for all ocean mixing. The simple math: total the mechanical energy of all the estimated marine swimmers in all the world's oceans and you get a figure that suggests as much as a third of all the vertical mixing in the world's oceans is produced by marine life.

Another and perhaps more precise way to approach the problem is to model the influence of a single swimmer on a fluid particle and multiply. That is the approach described this week in the journal Physics Letters A by mathematicians Jean-Luc Thiffeault of the University of Wisconsin-Madison and Stephen Childress of New York University.

"The method we use is essentially the one Einstein applied to Brownian motion in his famous 1905 paper," notes Thiffeault. "Many small kicks due to passing swimmers cause a parcel of water to undergo a kind of drunkard's random walk."

While the problem may seem arcane, it assumes real importance in settings like fish farms and ocean where large concentrations of confined fish can be at risk from bacterial infections caused by that, in the open, mixed ocean, wouldn't be an issue.

"Oceanographers want to know how things mix vertically in the ocean," says Thiffeault, explaining that the ocean is like a layer cake, with tiers of water from top to bottom that have different temperatures and concentrations of nutrients, such as iron.

"Because of the ocean's stratification, water doesn't want to move vertically, but it eventually must, otherwise there would be no life on earth," says Thiffeault. "This is called vertical transport. The question is where does it come from?"

In their study, funded by the National Science Foundation and the Office of Naval Research, Thiffeault and Childress examine the role of swimming marine life by simplifying things a bit and assuming that an individual swimmer will come in the shape of a sphere or cylinder. The effect of the swimming object on a particle of water is then calculated as it passes by.

"Our initial model is really too simple," says Thiffeault. "The numbers we're getting are very small in the open ocean, where there isn't a high density of marine life."

But the numbers go up when other factors are woven into the equation. For example, a single krill may not have much effect, but the tiny crustaceans are never alone. They gather in large, sometimes massive concentrations. And many marine swimmers, jellyfish, for example, also drag water with them when they swim, a phenomenon that could amplify the effect of the swimmer.

The model constructed by the two mathematicians in their report is far from complete. Such things as viscosity, wakes, schooling, boundary layers and, most importantly for applying the model to ocean mixing, buoyancy and stratification effects, still need to be built in to the model.

Stratification, for example, becomes important in the mixing equation as water is moved up or down by a swimmer: "If water dragged upwards by an organism doesn't warm up, it will sink again" and negate the potential mixing effect of the swimmer, Thiffeault explains.

According to Thiffeault, there are two camps on the influence of marine swimmers: those who believe they have a significant effect on ocean mixing and those who discount the idea.

"We're trying to remain agnostic about the role of marine life in mixing, but as a mechanism it could be applied to many other problems such as sedimentation. In one direction or another, it should be an interesting result."

Explore further: Using Twitter to probe political polarization

## Related Stories

#### Aquatic creatures mix ocean water

Nov 22, 2009

Understanding mixing in the ocean is of fundamental importance to modeling climate change or predicting the effects of an El Niño on our weather. Modern ocean models primarily incorporate the effects of winds and tides. ...

#### 150 years later, Darwin vindicated... by jellyfish: Researchers link tiny sea creatures to large-scale ocean mixing

Jul 29, 2009

(PhysOrg.com) -- Creatures large and small may play an important role in the stirring of ocean waters, according to a study released Wednesday that confirms a theory advanced by Charles Darwin.

#### Virtual swimmer to speed up athletes

Mar 30, 2006

CSIRO and the Australian Institute of Sport are using mathematics in a bid to speed up our top swimmers by testing changes to swimming strokes. The research will make use of the same software CSIRO uses for other fluid simulations ...

#### Census of Marine Life and ocean in Google Earth bring ocean information to life

Feb 02, 2009

Web visitors can now share the excitement of Census of Marine Life explorations as scientists uncover the mysteries of what lives below the surface of the global ocean.

#### Whale poo could aid climate, say Aussie scientists

Apr 23, 2010

Australian scientists have discovered an unlikely element in the fight against climate change -- whale poo.

#### Oceans becoming noisier thanks to pollution -- report

Dec 20, 2009

The world's oceans are becoming noisier thanks to pollution, with potentially harmful effects for whales, dolphins and other marine life, US scientists said in a study published Sunday.

## Recommended for you

#### Texting too tempting for college students even when inappropriate

9 minutes ago

College students may realize that texting in the shower or at a funeral is inappropriate, but many do it anyway, according to Penn State psychologists.

#### Accountancy stereotypes add up to stable profession

13 minutes ago

The media is littered with celebrity trainers, bakers, nutritionists, even gardeners. But, one profession is always missing from the roster - the celebrity accountant. The reason is most likely due to the negative stereotypes ...

#### Volunteers not safe from workplace bullying

1 hour ago

Despite the charitable nature of volunteering, new research from Murdoch University and Edith Cowan University has found one in three volunteers can experience workplace bullying.

#### The problem with solitary confinement

1 hour ago

It's a practice that has been in the news since the Ashley Smith case first made headlines and, last week, the Ontario government announced it had launched a review of its solitary confinement policies.

#### 100-million-year-old scale insect practiced brood care

1 hour ago

Scientists at the University of Bonn, together with colleagues from China, UK and Poland, have described the oldest evidence of brood care in insects: it is in a female scale insect with her young that is encased in amber ...

#### Study on MOOCs provides new insights on evolving educational practice

3 hours ago

Today, a joint MIT and Harvard University research team published one of the largest investigations of massive open online courses (MOOCs) to date. Building on these researchers' prior work—a January 2014 ...