New type of human stem cell may be more easy to manipulate

Jun 08, 2010

Researchers from the Massachusetts General Hospital Center for Regenerative Medicine (MGH-CRM) and the Harvard Stem Cell Institute have a developed a new type of human pluripotent stem cell that can be manipulated more readily than currently available stem cells. As described in the June 4 Cell Stem Cell, these new cells could be used to create better cellular models of disease processes and eventually may permit repair of disease-associated gene mutations.

"It has been fairly easy to manipulate from mice, but this has not been the case for traditional human stem cells," explains Niels Geijsen, PhD, of the MGH-CRM, who led the study. "We had previously found that the growth factors in which mouse stem cells are derived define what those cells can do, and now we've applied those findings to human stem cells."

The first mammalian (ESCs) were derived from mice and have proven very useful for studying gene function and the impact of changes to individual . But techniques used in these studies to introduce a different version of a single gene or inactivate a particular gene were ineffective in human ESCs. In addition, human ESCs proliferate much more slowly than do cells derived from mice and grow in flat, two-dimensional colonies, while mouse ESCs form tight, three-dimensional colonies. It is been extremely difficult to propagate human ESCs from a single cell, which prevents the creation of genetically manipulated human embryonic stem cell lines.

In previous work, Geijsen and his colleagues demonstrated that the growth factor conditions under which stem cells are maintained in culture play an important role in defining the cells' functional properties. Since the growth factors appeared to make such a difference, the researchers tried to make a more useful human pluripotent cell using a new approach. They derived human induced (iPSCs) - which are created by reprogramming adult cells and have many of the characteristics of human ECSs, including resistance to manipulation - in cultures containing the growth factor LIF, which is used in the creation of mouse ESCs.

The resulting cells visibly resembled mouse ESCs and proved amenable to a standard gene manipulation technique that exchanges matching sequences of DNA, allowing the targeted deactivation or correction of a specific gene. The ability to manipulate these new cells depended on both the continued presence of LIF and expression of the five genes that are used in reprogramming adult cells into iPSCs. If any of those factors was removed, these hLR5- (for human LIF and five reprogramming factors) iPSCs reverted to standard iPSCs.

"Genetic changes introduced into hLR5-iPSCs would be retained when they are coverted back to iPSCs, which we then can use to generate cell lines for future research, drug development and someday stem-cell based gene-correction therapies," says Geijsen. He is an assistant professor of Medicine at Harvard Medical School and a principal faculty member of the Harvard Stem Cell Institute.

Explore further: The malaria pathogen's cellular skeleton under a super-microscope

Related Stories

Reprogrammed mouse fibroblasts can make a whole mouse

Jul 23, 2009

In a paper publishing online July 23 in Cell Stem Cell, a Cell Press journal, Dr. Shaorong Gao and colleagues from the National Institute of Biological Sciences in Beijing, China, report an important advance in the charac ...

Memories of the way they used to be

Sep 18, 2009

A team of researchers from the University of California, San Diego School of Medicine and the Salk Institute for Biological Studies in La Jolla have developed a safe strategy for reprogramming cells to a pluripotent ...

How Useful Are Adult Stem Cells, Really?

Apr 26, 2010

(PhysOrg.com) -- With the debate (especially in the U.S.) raging over ethics of using embryonic stem cells in research to cure diseases like ALS, Parkinsons, Type 1 diabetes and even spinal cord injuries, ...

Recommended for you

For resetting circadian rhythms, neural cooperation is key

18 hours ago

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

Rapid and accurate mRNA detection in plant tissues

19 hours ago

Gene expression is the process whereby the genetic information of DNA is used to manufacture functional products, such as proteins, which have numerous different functions in living organisms. Messenger RNA (mRNA) serves ...

For cells, internal stress leads to unique shapes

Apr 16, 2014

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

User comments : 0

More news stories

Scientists tether lionfish to Cayman reefs

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

Deadly human pathogen Cryptococcus fully sequenced

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

Leeches help save woman's ear after pit bull mauling

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

Venture investments jump to $9.5B in 1Q

Funding for U.S. startup companies soared 57 percent in the first quarter to a level not seen since 2001, as venture capitalists piled more money into an increasing number of deals, according to a report due out Friday.