Plastic laser detects tiny amounts of explosives

Jun 08, 2010 by Lin Edwards report
Polymer laser. Image credit: Organic Semiconductor Optoelectronics / University of St Andrews

(PhysOrg.com) -- Detecting hidden explosives is a difficult task but now researchers in the UK have developed a completely new way of detecting them, with a laser sensor capable of detecting molecules of explosives at concentrations of 10 parts per billion (ppb) or less.

The sensor, developed by physicists from the University of St Andrews in Fife, Scotland, relies on the fact that when a type of plastic called polyfluorene is “pumped” with of light from a light source it emits . When molecules of the vapors emitted by explosives such as TNT are present, they interfere with the laser light, switching off the emission, and the interference can be measured.

One of the scientists, Dr. Graham Turnbull, explained that there is a dilute, weak cloud of vapors of nitroaromatic-based explosive molecules above an explosive device. He said the laser could be thought of as an “artificial nose for a robot dog.”

In the study a plastic laser was exposed to 1,4-dinitribenzene (DNB) vapors at 9.8 ppb concentration. The light emitted by the laser decreased rapidly, allowing for detection within seconds of the exposure. After 4-5 minutes the response had slowed and then flattened off, which the researchers suggest is due to the interacting with the surface of the polyfluorene. The laser took three and a half hours to recover in air, but only three minutes if was flushed through it and 20 seconds if purged under a vacuum.

The plastic polyfluorene is a cheap material, which is an obvious advantage for a device designed to detect explosives. Dr. Turnbull said that while similar techniques using organic semiconductor lasers had been looked at before, this is the first time scientists have used a polyfluorene laser, and its use enables much lower concentrations of vapors to be detected.

Organic detect explosive vapors because of a between the vapor and the semiconductor in which electrons are transferred from the semiconductor to the electron-deficient vapor molecules. It is this transfer of electrons that reduces the light emitted by the laser. The same electron-transfer effect occurs with the new polyfluorene laser.

The drawback with the laser sensors is that the explosives must be in the very near vicinity, which limits its use for humans, but they could prove extremely useful for applications such as roadside bomb detection in Iraq and Afghanistan, for security checkpoints, luggage screening in airports, and for bomb disposal robots generally. The system could also be used in conjunction with remotely controlled robots for detecting land mines, which are still a danger to people in areas such as Southeast Asia.

The findings were published in the journal Advanced Functional Materials.

Explore further: Technique simplifies the creation of high-tech crystals

More information: Ying Yang et al., Sensitive Explosive Vapor Detection with Polyfluorene Lasers, Advanced Functional Materials, Published Online: 25 May 2010. DOI:10.1002/adfm.200901904

Related Stories

New method for detecting explosives

Mar 13, 2009

A group of researchers in Tennessee and Denmark has discovered a way to sensitively detect explosives based on the physical properties of their vapors. Their technology, which is currently being developed into prototype devices ...

Scientists improve explosives detection

Apr 21, 2005

MIT researchers have announced a scientific breakthrough that could greatly improve explosives detection for military and civilian security applications. Scientists have developed a new polymer that greatly inc ...

Watching Electrons with Lasers

Nov 06, 2008

(PhysOrg.com) -- A team of researchers from the Stanford PULSE Institute for Ultrafast Energy Science at SLAC National Accelerator Laboratory has recently moved a step closer to visualizing the motions of ...

NRL Develops Technique To Speed Detection Process

Feb 15, 2010

(PhysOrg.com) -- Researchers at the Naval Research Laboratory are developing a device to enable rapid detection and identification of bacteria, chemicals, and explosives in the environment or on the battlefield.

Recommended for you

Physicists discuss quantum pigeonhole principle

Jul 26, 2014

The pigeonhole principle: "If you put three pigeons in two pigeonholes at least two of the pigeons end up in the same hole." So where's the argument? Physicists say there is an important argument. While the ...

First in-situ images of void collapse in explosives

Jul 25, 2014

While creating the first-ever images of explosives using an x-ray free electron laser in California, Los Alamos researchers and collaborators demonstrated a crucial diagnostic for studying how voids affect ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

AdrianMiller
not rated yet Jun 18, 2010
If anyone would like to know more about the science behind this story, we've set the original research article free to access for the next few days; you can find it here: http://www.materi...ion.html

Adrian Miller
Advanced Functional Materials