Plastic laser detects tiny amounts of explosives

Jun 08, 2010 by Lin Edwards report
Polymer laser. Image credit: Organic Semiconductor Optoelectronics / University of St Andrews

(PhysOrg.com) -- Detecting hidden explosives is a difficult task but now researchers in the UK have developed a completely new way of detecting them, with a laser sensor capable of detecting molecules of explosives at concentrations of 10 parts per billion (ppb) or less.

The sensor, developed by physicists from the University of St Andrews in Fife, Scotland, relies on the fact that when a type of plastic called polyfluorene is “pumped” with of light from a light source it emits . When molecules of the vapors emitted by explosives such as TNT are present, they interfere with the laser light, switching off the emission, and the interference can be measured.

One of the scientists, Dr. Graham Turnbull, explained that there is a dilute, weak cloud of vapors of nitroaromatic-based explosive molecules above an explosive device. He said the laser could be thought of as an “artificial nose for a robot dog.”

In the study a plastic laser was exposed to 1,4-dinitribenzene (DNB) vapors at 9.8 ppb concentration. The light emitted by the laser decreased rapidly, allowing for detection within seconds of the exposure. After 4-5 minutes the response had slowed and then flattened off, which the researchers suggest is due to the interacting with the surface of the polyfluorene. The laser took three and a half hours to recover in air, but only three minutes if was flushed through it and 20 seconds if purged under a vacuum.

The plastic polyfluorene is a cheap material, which is an obvious advantage for a device designed to detect explosives. Dr. Turnbull said that while similar techniques using organic semiconductor lasers had been looked at before, this is the first time scientists have used a polyfluorene laser, and its use enables much lower concentrations of vapors to be detected.

Organic detect explosive vapors because of a between the vapor and the semiconductor in which electrons are transferred from the semiconductor to the electron-deficient vapor molecules. It is this transfer of electrons that reduces the light emitted by the laser. The same electron-transfer effect occurs with the new polyfluorene laser.

The drawback with the laser sensors is that the explosives must be in the very near vicinity, which limits its use for humans, but they could prove extremely useful for applications such as roadside bomb detection in Iraq and Afghanistan, for security checkpoints, luggage screening in airports, and for bomb disposal robots generally. The system could also be used in conjunction with remotely controlled robots for detecting land mines, which are still a danger to people in areas such as Southeast Asia.

The findings were published in the journal Advanced Functional Materials.

Explore further: Pseudoparticles travel through photoactive material

More information: Ying Yang et al., Sensitive Explosive Vapor Detection with Polyfluorene Lasers, Advanced Functional Materials, Published Online: 25 May 2010. DOI:10.1002/adfm.200901904

Related Stories

New method for detecting explosives

Mar 13, 2009

A group of researchers in Tennessee and Denmark has discovered a way to sensitively detect explosives based on the physical properties of their vapors. Their technology, which is currently being developed into prototype devices ...

Scientists improve explosives detection

Apr 21, 2005

MIT researchers have announced a scientific breakthrough that could greatly improve explosives detection for military and civilian security applications. Scientists have developed a new polymer that greatly inc ...

Watching Electrons with Lasers

Nov 06, 2008

(PhysOrg.com) -- A team of researchers from the Stanford PULSE Institute for Ultrafast Energy Science at SLAC National Accelerator Laboratory has recently moved a step closer to visualizing the motions of ...

NRL Develops Technique To Speed Detection Process

Feb 15, 2010

(PhysOrg.com) -- Researchers at the Naval Research Laboratory are developing a device to enable rapid detection and identification of bacteria, chemicals, and explosives in the environment or on the battlefield.

Recommended for you

Pseudoparticles travel through photoactive material

Apr 23, 2015

Researchers of Karlsruhe Institute of Technology (KIT) have unveiled an important step in the conversion of light into storable energy: Together with scientists of the Fritz Haber Institute in Berlin and ...

From metal to insulator and back again

Apr 22, 2015

New work from Carnegie's Russell Hemley and Ivan Naumov hones in on the physics underlying the recently discovered fact that some metals stop being metallic under pressure. Their work is published in Physical Re ...

Electron spin brings order to high entropy alloys

Apr 22, 2015

Researchers from North Carolina State University have discovered that electron spin brings a previously unknown degree of order to the high entropy alloy nickel iron chromium cobalt (NiFeCrCo) - and may play ...

Expanding the reach of metallic glass

Apr 22, 2015

Metallic glass, a class of materials that offers both pliability and strength, is poised for a friendly takeover of the chemical landscape.

Electrons move like light in three-dimensional solid

Apr 22, 2015

Electrons were observed to travel in a solid at an unusually high velocity, which remained the same independent of the electron energy. This anomalous light-like behavior is found in special two-dimensional ...

Quantum model helps solve mysteries of water

Apr 20, 2015

Water is one of the most common and extensively studied substances on earth. It is vital for all known forms of life but its unique behaviour has yet to be explained in terms of the properties of individual ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

AdrianMiller
not rated yet Jun 18, 2010
If anyone would like to know more about the science behind this story, we've set the original research article free to access for the next few days; you can find it here: http://www.materi...ion.html

Adrian Miller
Advanced Functional Materials

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.